NOTES ON CATEGORY THEORY

TIAGO MACEDO

ABSTRACT. These notes serve as a compilation of foundational material
in category theory, intended primarily as a personal reference to help un-
derstand recent developments in representation theory. While no original
results are presented, this text provides a self-contained exposition of three
central themes: abelian categories, tensor categories, and stratification of
abelian categories.

The material is organized into four distinct parts. Part I establishes the
theory of abelian categories, building up from the axioms of abstract cat-
egories and universal constructions (including limits, colimits, kernels, and
cokernels) through pre-additive and additive structures. Part II acts as a
bridge, detailing some types of functors, such as exact, fully faithful, and
adjoint functors, that are essential for the remainder of the text. Part III
focuses on categories equipped with internal multiplication, systematically
defining and exemplifying monoidal, braided, and symmetric monoidal cat-
egories. Finally, Part IV addresses the stratifications of abelian categories.
In this section, we introduce the machinery of Serre subcategories and Serre
quotients, culminating in the theory of recollements and stratifications.
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Part 1
Abelian Categories

The main goal of this part is to introduce abelian categories. This concept
distils the essential properties of abelian groups and provides an appropriate
axiomatic framework to study several objects in algebra, topology and alge-
braic geometry.

We will build the theory of abelian categories constructively, moving from
the general to the specific. We begin with the fundamental definitions of
abstract categories and basic constructions. Subsequently, we enrich this
structure by introducing preadditive and additive categories, which impose
an abelian group structure on the sets of morphisms. Finally, by necessitating
the existence of kernels and cokernels, we arrive at the definition of pre-abelian
and, ultimately, abelian categories. On the route through these concepts, we
provide several illustrative examples.

1.1. ABSTRACT CATEGORIES

We will begin by presenting the abstract definition of a category. Categories
were created to provide a language that unifies different mathematical fields,
enabling the transfer of results and ideas between them. This universality
comes with a lot of flexibility, but one immediately notices that it also comes
with a lot of abstraction.

Definition 1.1.1. A category € is a triple (Obj, Mor, o), where:

e Obj is a class, whose elements are called the objects of C;

e Mor is also a class, whose elements are called the morphisms of €, and
moreover, for each pair of objects A and B in Obj, there is a subclass of
Mor, denoted by Hom(A, B), whose elements are called morphisms from
A to B and often denoted by arrows A — B;

e o is a relation Mor x Mor — Mor called composition, that satisfies the

following conditions:
3
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(i) for every three objects A, B, C' and two morphisms f € Hom(A, B),
g € Hom(B, C), there exists a morphism (g o f) € Hom(A, C).

(ii) for every four objects A, B,C, D in Obj and every three morphisms
f € Hom(A, B), g € Hom(B, C), h € Hom(C, D), we have:
(hog)o f=ho(gof);

(iii) for every object A in Obj, there is a morphism idy € Hom(A, A)
called the identity morphism, that satisfies the following conditions:
for every morphism f € Hom(A, B), we have foids = f, and for
every morphism g € Hom(B, A), we have goidg = g.

To help make this abstract definition more concrete, we will now provide
two examples of categories. We begin with the smallest possible category for
which ODbj is non-empty.

Example 1.1.2. The smallest category for which Obj is non-empty is the one
with only one object and one morphism. More explicitly:

e Obj = {x}, where % is the only object of this category:;
e Mor = {id,}, that is, id, is the only morphism of this category;

e the composition is given by id, oid, = id,.

Notice that, in fact, all the conditions given in Definition 1.1.1 hold.

The next example is a more concrete and well-known one. It shows how sets
and functions can form a category.

Example 1.1.3. The category of sets, which we will denote by Sets, is given
as follows:

e The objects of the category Sets are all the sets;
e The morphisms of Sets are all the functions between sets;

e The composition of morphisms is the usual composition of functions.
Notice that all the conditions given in Definition 1.1.1 hold. In fact:

(i) for every three sets A, B,C and two functions f : A - B, g : B — C,
their composition (go f): A — C is also a function.
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(ii) for every four sets A, B,C, D and every three functions f : A — B,
g:B—=C,h:C — D, we have:

((hog)o f)a) = (hog)(f(a))
= h(g(f(a)))

= h((go f)(a))
= (ho(go f))(a), for all a € A.

(iii) for every set A, its identity function is the function ids : A — A explicitly
given by ida(a) = a for all @ € A. Notice that, for every set B, every
function f : A — B and every function g : B — A, we have:

(foida)(a) = f(ida(a)) = f(a) for all a € A,
(ida og)(b) = ida(g(b)) = g(b) for all b € B.

We will see further examples of categories in the following sections. To finish
this section, we would like to make a few technical remarks.

Notice that in the definition of category, objects and morphisms form classes
rather than sets. This distinction arises because, in set theory, one faces limi-
tations when trying to define collections that are “too large” or “too general”.
In fact, in standard set theory (such as Zermelo-Fraenkel set theory with the
Axiom of Choice, or ZFC) a set is a collection of elements that is itself an
element of some larger set. However, there are strict limitations on the size
of a set due to the Aziom of Regularity (which prevents sets from containing
themselves directly or indirectly) and the Aziom of Infinity (which ensures
that no set is “too large”).

In particular, the collection of all sets cannot itself be a set because such
a collection would lead to paradoxes like Russell’s paradox, which questions
whether a set of all sets that do not contain themselves contains itself. To
avoid such paradoxes, one introduces the notion of classes for collections that
may be “too large” to be sets, but are still useful in formalising mathematical
concepts. In particular, this allows the category Sets from Example 1.1.3 to
be a category.

However, as we have seen in Example 1.1.2, there are instances where the
objects or morphisms of a category form a set. In the cases where the mor-
phisms form a set, the category is called locally small, and in the cases where
the objects also form a set, the category is called small. Most of the categories
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that we will deal with in the coming sections will be either locally small or
small.

1.2. CONSTRUCTIONS IN CATEGORIES I

In this section, we will present some constructions in abstract categories.
At first sight, some of these constructions can seem too abstract. In the
examples, we provide more concrete instances of these abstract definitions,
and in subsequent sections, we will use them.

1.2.1. Isomorphisms. In this subsection, we will introduce isomorphisms,
which are central to understanding how objects in a category relate to each
other. More specifically, two objects are said to be isomorphic when they are
essentially the same from the perspective of the category. This relationship is
formally captured by the following definition.

Definition 1.2.1. Given a category € and two objects A, B € Obj, a mor-
phism f € Hom(A, B) is said to be an isomorphism when there exists a mor-
phism g € Hom(B, A) such that:

gof=idy and fog=idgp.

In this case, g is called the inverse of f and the objects A and B are said to
be isomorphic.

This abstract definition of isomorphism captures the idea of sameness be-
tween elements. In the following examples, we will see how this abstract
definition works in more concrete cases.

Example 1.2.2. Let C be a category such that Obj is non-empty. For every
object X € Obj, its identity morphisms is an isomorphism. In fact, recall that
idy oidy = idx. This implies that idy is the inverse of itself, that idx is an
isomorphism, and that X is isomorphic to itself.

In the first example above, we considered identities as isomorphisms. How-
ever, isomorphisms can be more general and relate distinct objects. In the
next example we will see how isomorphisms are precisely the bijections in the
category of sets.

Example 1.2.3. In the category of sets (see Example 1.1.3), isomorphisms
are bijections. To justify that, we begin by recalling that in the category of
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sets, the objects are sets, and the morphisms are functions between sets. In
particular, a morphism (function) f from an object (set) A to an object (set) B
is an isomorphism when there exists a function g : B — A such that go f = id4
and f o g =idg. This means that f and g are bijections between A and B.

1.2.2. Initial and terminal objects. In this subsection, we turn our atten-
tion to the concepts of initial and terminal objects. Their definition is the first
one in which a “universal property” appears.

Definition 1.2.4. An object [ in a category € is said to be an initial object if,
for every object X in Obj, there is a unique morphism from I to X. Similarly,
an object T' in € is said to be a terminal object if, for every object X in Obj,
there is a unique morphism from X to 7.

To see how these definitions are realized in concrete cases, we will exhibit the
initial and terminal objects in two categories that we have already introduced.
We begin by showing how the unique object of the smallest category for which
Obj is non-empty is both initial and terminal.

Example 1.2.5. In the category constructed in Example 1.1.2, the unique
object * is both an initial and a terminal object. In fact, since x is the only
object in this category, the identity morphism satisfies id, : * — *, and id, is
the only morphism in this category, * satisfies the conditions for being both
an initial and a terminal object in this category.

The category from Example 1.2.5 is particularly simple, as it has only one
object, and thus both initial and terminal object conditions are trivially satis-
fied. To provide a more substantial example, we now consider the category of
sets, where the concepts of initial and terminal objects are a little less trivial.

Example 1.2.6. In the category of sets (see Example 1.1.3), the empty set is
the only initial object, and every set with one element is a terminal object.

To justify that the empty set, (), is an initial object in the category Sets,
we must show that, for every set X, there exists a unique function [ : ) — X.
Since () has no elements, there are no elements to be mapped, and thus, the
empty function is the only function from the @) to X.

Now, to justify that a set {x} with one element (%) is terminal in Sets,
we need to show that, for every set X, there exists exactly one function from
X to {x}. Since {x} has only one element, any function f : X — {x} must
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assign every element x € X to x. Thus, for every set X, there exists only the
constant function from X to {*}.

The examples above highlight the general idea that initial objects “map to”
every other object uniquely, while terminal objects “receive a unique mapping”
from every other object. The next proposition formalizes a key property of
initial and terminal objects, namely, that when they exist, initial and terminal
objects are essentially (up to isomorphism) unique in a category.

Proposition 1.2.7. Let C be a category.

(a) If I and I’ are initial objects of €, then I and I’ are isomorphic.

(b) If T"and T" are terminal objects of C, then 7" and 7" are isomorphic.

Proof. We will prove each part of this proposition separately.

(a) Suppose that I and I’ are both initial objects in €. We want to prove
that I and I’ are isomorphic.

By the definition of an initial object, for each object X in €, there is a
unique morphism from 7 to X, and a unique morphism from I’ to X. In
particular, there exists a unique morphism from I to I’, say f : I — I,
and also a unique morphism from I’ to I, say g : I' — 1.

Now, consider the composition go f : I — I. Since [ is initial, there is
a unique morphism from I to itself, which must be the identity morphism
id;. Therefore, we have:

go f=ids.
Similarly, consider the composition fog : I’ — I'. Since I’ is initial,

there is a unique morphism from I’ to itself, which must be the identity
morphism idy. Therefore, we have:

fog=idp.

Thus, f and g are mutually inverse, so f is an isomorphism, and as a
consequence [ is isomorphic to I'.

(b) Suppose now that 7" and 7" are both terminal objects in €. We want to
prove that T and T are isomorphic.

By the definition of a terminal object, for each object X in C, there is a
unique morphism from X to 7', and a unique morphism from X to 7”. In
particular, there exists a unique morphism from 7" to 7”7, say f : T — 1",
and also a unique morphism from 7" to T, say g : T" — T.
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Now, consider the composition fog : T — T’. Since T” is terminal,
there is a unique morphism from 7" to itself, which must be the identity
morphism id7». Therefore, we have:

fog=idp.

Similarly, consider the composition go f : T" — T. Since T is terminal,
there is a unique morphism from 7' to itself, which must be the identity
morphism idy. Therefore, we have:

go f=idr.
Thus, f and g are mutually inverse, so f is an isomorphism, and as a
consequence, T' is isomorphic to T". 0

It is important to note that not all categories have an initial or terminal
object. The existence of these objects depends on the specific structure of
the category in question. We end this subsection showing an example of a
category with an initial object and without any terminal one.

Example 1.2.8. Consider a category € with three objects, Obj = {A, B, C'},
and five morphisms, Mor = {id4,idg,id¢, f, g}, where f € Hom(B, A) and
g € Hom(B, C). A diagrammatic picture of this category is the following:

id idp ide

()00 0)

A«——DB—C

In this case, the object B is an initial object, but no object in this category is
terminal. To justify the claim that B is an initial object, notice that

Hom(B,A) ={f}, Hom(B,B)={idg} and Hom(B,C)={g},

that is, there exists exactly one morphism from B to every object in €. Now,
to justify the claim that no object in € is terminal, notice that

Hom(C,A) =0, Hom(A,B)=Hom(C,B)=10 and Hom(A,C)={0.

In a similar way as in the example above, one can construct a category with
no initial object and a terminal object, or a category with no initial object and
no terminal object, or a category with several isomorphic initial (or terminal)
objects.
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1.2.3. Products. Products are the abstract categorical concept that general-
izes Cartesian products and direct products. They provide a way to combine
objects in a category into a single object that “projects” back to the original
objects in a universal way. In this section, we will define products abstractly
and explore concrete examples to illustrate their properties.

Definition 1.2.9. Given a category C, the product of two of its objects, A
and B, is a triple (P, p1, p2) that satisfies the following properties:

(i) P € Obj,
(ii) p1 € Hom(P, A),
(iii) po € Hom(P, B),
)

(iv) for every object X in Obj and every pair of morphisms f; € Hom(X, A)
and fo € Hom(X, B), there exists a unique morphism F' : X — P such
that pyo F'= f; and pyo F' = f5.

To better understand the abstract definition of products, we will consider
some concrete examples. We will start with the simplest possible category and
then move to more familiar categories like the category of sets.

Example 1.2.10. Let € be a category with only one object and only one
morphism, defined in Example 1.1.2. The product of its only object x with
itself is the triple (%, id,,idy).

To justify this, notice that x € Obj and id, € Hom(x, x). Also notice that,
since this category only has the object x and the morphism id,, then we only
need to analyse the case where X = % and f; = fo = id, : *x — *. In fact,
there exists the morphism F = id, : x — % that satisfies id, oid, = id,.

Having seen the simplest example of a product, we now consider a more
familiar category: the category of sets. Here, products correspond to the
Cartesian product of sets.

Example 1.2.11. In the category of sets, the product of two non-empty sets is
the Cartesian product of these sets equipped with their respective projections.
To justify this, let A and B be sets, recall that their Cartesian product is the
set defined by

Ax B:={(a,b) |a € A, be B},
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and define the functions

p1:(Ax B)— A given by pi(a,b) = a,
pe: (AXx B) — B given by pa(a,b) =0b.

Given a set X and two functions, f; : X — A and f, : X — B, define a
function F' : X — (A x B) as being given by F(x) = (fi(z), fa(x)). Notice
that F'is a well-defined function, that (p; o F')(x) = pi(F(z)) = fi(z) and that
(pa o F)(x) = po(F(x)) = fo(x) for all x € X. This justifies that the triple
(A X B,p1,pe) is, in fact, the product of the objects A and B in the category
of sets.

The following proposition formalizes the fact that products are unique up
to isomorphism, meaning that any two products of the same pair of objects
are essentially the same in a categorical sense.

Proposition 1.2.12. Let € be a category, and let A and B be objects of C. If

(P, p1,p2) and (P',p,ph) are two products of A and B, then P is isomorphic
to P'.

Proof. First, recall from the construction of (P, p;,ps) that p; € Hom(P, A)
and p, € Hom(P, B). Then, recall from the defining property of (P, p!, p}),
that there exists a unique morphism f : P — P’ such that p}j o f = p; and
pyo [ =pa.

Similarly, by switching P and P’, we see that there exists a unique morphism
f': P' — P such that p; o f' = p} and py o f' = pl,. Hence, (f'o f): P — P
is a morphism such that:

pro(ffof)=(iof)of=piof=m
and

peo(fof)=(pof)of=pyof=nps

Further, recall from the construction of (P, p;, p2) that p; € Hom(P, A) and
pa € Hom(P, B). Then, recall from the defining property of (P, p,ps2) itself,
that there exists a unique morphism ¢ : P — P such that p; o ¢ = p; and
P2 © ¢ = py. Since ¢ = idp satisfies these conditions and, as we have shown
above, ¢ = f’o f also satisfies these conditions, we conclude that f'o f = idp.
Thus, f: P — P’ and f': P’ — P are isomorphisms. O
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In the proposition above, we showed that products are unique, when they
exist. However, not all categories have products for every pair of objects. In
the next example, we will see a simple category where the product of two
objects does not exist.

Example 1.2.13. Consider a category € with three objects, Obj = {A, B, C'},
and five morphisms, Mor = {idy,idg,id¢, f, g}, where f € Hom(A, B) and
g € Hom(C, B). A diagrammatic picture of this category is the following:

id4 idp ide

()0, 0)

A— B+«———C

In this case, the product of the objects A and C' does not exist. In fact, there
exists no object P in € such that Hom(P, A) and Hom(P, C') are simultaneously
non-empty:

Hom(A,C) =0, Hom(B,A)=Hom(B,C)=0 and Hom(C,A) = 0.

Notice that in Definition 1.2.9, we have defined the product of two objects in
an abstract category. However, one can define, in a similar way, the product of
any family of objects. Specifically, if {A;};cs is a family of objects in a category
C (I being its indexing set), then its product is an object P € Obj together
with a family of morphisms {p;};cr satisfying the following properties:

e p :P— A foreachi €I,

e for any object X € Obj for which a family of morphisms {f; : X — A; }ier
exists, there exists also a unique morphism F': X — P such that p;o F' =
fiforalliel.

In particular, in the case where the index set I is empty, we have the fol-
lowing result:

Proposition 1.2.14. Let C be a category. If the product of an empty family
of objects in € exists, then it is a terminal object of C.

Proof. By definition, the empty product is an object P such that for any
object X, there exists a unique morphism f : X — P. Therefore, if the empty
product exists, it must be a terminal object of €. O
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1.2.4. Coproducts. Coproducts are the abstract categorical concept that
generalizes disjoint unions. They provide a way to combine objects in a cat-
egory into a single object that “contains a copy” of the original objects in a
universal way. In this section, we will define coproducts abstractly and explore
concrete examples to illustrate their properties.

Definition 1.2.15. Given a category €, the coproduct of two of its objects,
A and B, is a triple (C,1,12) that satisfy the following properties:

(i) C € Obj,
(ii) i3 € Hom(A, C),
(iii) 79 € Hom(B, C),
)

(iv) for every object X in Obj and every pair of morphisms f; € Hom(A, X)
and fo € Hom(B, X), there exists a unique morphism F : C' — X such
that Froiy = f; and F o1y = f.

To better understand the abstract definition of coproducts, we will consider
some concrete examples. We will start with the simplest possible category and
then move to more familiar categories like the category of sets.

Example 1.2.16. Let € be a category with only one object and only one
morphism, defined in Example 1.1.2. The coproduct of its only object * with
itself is the triple (%, id,,idy).

To justify this, notice that x € Obj and id, € Hom(x, x). Also notice that,
since this category only has the object x and the morphism id,, then we only
need to analyse the case where X = % and f; = fo = id, : *x — *. In fact,
there exists the morphism F = id, : x — % that satisfies id, oid, = id,.

Having seen the simplest example of a coproduct, we now consider a more
familiar category: the category of sets. Here, products correspond to the
disjoint union of sets.

Example 1.2.17. In the category of sets, the coproduct of two non-empty sets
is the disjoint union of these sets equipped with their respective inclusions. To
justify this, let A and B be sets, recall that their disjoint union is the set
defined by

AUB :={z,|aec Ay U{y, | b€ B},
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where we treat z, and ¥, as formal elements in order to differentiate elements
that may eventually be in the intersection A N B. Then, define the inclusions

ip: A— (AU B) given by i(a) = z,,
io: B— (AUB) given by is(b) = .

Given a set X and two functions, f; : X — A and f, : X — B, define a
function F': (AU B) — X as being given by

F(2) fi(a), if z ==z, for some a € A,
Z) =
fa(b), if z =y, for some b € B.

Notice that F' is well-defined, that (F oiy)(a) = F(i1(a)) = fi(z.) = a for all
a € A and that (F oiy)(b) = F(ia(b)) = fa(yp) = b for all b € B. This justifies
that the triple (A U B, iy,19) is, in fact, the coproduct of the objects A and B
in the category of sets.

The following proposition formalizes the fact that coproducts are also unique
up to isomorphism, meaning that any two coproducts of the same pair of
objects are essentially the same in a categorical sense.

Proposition 1.2.18. Let € be a category, and let A and B be objects of C. If
(C,iy,19) and (C', 4, 1,) are two coproducts of A and B, then C' is isomorphic
to C'.

Proof. First, recall from the construction of (C,iy,i5) that i; € Hom(A,C)
and 7o € Hom(B,C'). Then, recall from the defining property of (C’,d},15),
that there exists a unique morphism I’ : C' — C” such that I’ 0 4; = 7} and
I'oiy =1,

Similarly, by switching C' and C’, we see that there exists a unique morphism
I:C"— C such that [ o4} =4, and [ ot, =iy. Hence, (Iol'): C — C'is a
morphism such that:

(Iol'Yoiy=To(I'oi)) =10} =14
and
(Iol'Yoig=1To(I'oiy) =101y =1y

Further, recall from the construction of (C,1y,1iy) that iy € Hom(A, C') and
io € Hom(B, ). Then, recall from the defining property of (C,i,1is) itself,
that there exists a unique morphism ¢ : C' — C such that ¢ o4, = 7; and
¢ o1y = 19. Since ¢ = id¢ satisfies these conditions and, as we have shown
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above, ¢ = I o I’ also satisfies these conditions, we conclude that I o I’ = id¢.
Thus, I’ : C — C" and I : " — C are isomorphisms. O

In the proposition above, we showed that coproducts are unique, when they
exist. However, not all categories have coproducts for every pair of objects.
In the next example, we will see a simple category where the coproduct of two
objects does not exist.

Example 1.2.19. Consider a category € with three objects, Obj = {A, B, C'},
and five morphisms, Mor = {idy,idg,id¢, f, g}, where f € Hom(B, A) and
g € Hom(B, (). A diagrammatic picture of this category is the following:

id4 idp ide

()00 0)

A«——DB—C

In this case, the coproduct of the objects A and C does not exist. In fact,
there exists no object X in € such that Hom(A, X) and Hom(C, X) are simul-
taneously non-empty:

Hom(C,A) =0, Hom(A,B)=Hom(C,B)=0 and Hom(A,C)=0.

Notice that in Definition 1.2.15 we have defined the coproduct of two ob-
jects in an abstract category. However, one can define, in a similar way, the
coproduct of any family of objects. Specifically, if {A4;},c; is a family of ob-
jects in a category C (J being its indexing set), then its coproduct is an object
C' € Obj, together with a family of morphisms {¢;},c; satisfying the following
properties:

e 1j: A — CforeachjeJ,

e For any object X € Obj for which a family of morphisms {f; : A4; —
X}jes exists, there exists also a unique morphism F' : C' — X such that
FOLj:f]’ for allj e J.

In particular, in the case where the index set J is empty, we have the
following result:

Proposition 1.2.20. Let C be a category. If the coproduct of an empty family
of objects in € exists, then it is an initial object of C.
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Proof. By definition, the empty coproduct is an object C' such that for any
object X, there exists a unique morphism F': C' — X. Therefore, if the empty
coproduct exists, it must be an initial object of C. 0

1.3. PREADDITIVE CATEGORIES

Preadditive categories are categories for which the hom-sets are equipped
with an abelian group structure (see Definition A.1). This structure allows for
the addition of morphisms. In this section, we will define preadditive categories
and explore their properties through concrete examples and propositions.

Definition 1.3.1. A category C is said to be preadditive when, for every pair
of objects A, B € Obj, there exists a binary operation

+ : Hom(A, B) x Hom(A, B) — Hom(A, B),
such that (Hom(A, B),+) is an abelian group and, moreover,

(f+f)og=fog+fog and go(f+[f)=gof+golf,
for all objects A, B,C, D € Obj, all morphisms f, f € Hom(A, B), and all
morphisms g, ¢’ € Hom(C, D).

Notice that if a category C is preadditive, then it is also locally small, since
Hom(A, B) must be a set for every pair of objects A, B € Obj. Notice, more-
over, that if € is a preadditive category, then Hom(A, B) is non-empty for
every pair of objects A, B € Obj.

To better understand the abstract definition of preadditive categories, we
will consider some concrete examples. We will start with the simplest possible
category and then explore more complex cases.

Example 1.3.2. Notice that the category with one object and one morphism
(constructed in Example 1.1.2) is preadditive. In fact, recall that this category
has only one object, Obj = {x} and only one morphism, Mor = {id, }. Hence,
in this case, the only group structure that the set Mor (with only one element)
admits is the trivial one, that is, id, +id, := id,. Thus, it is obvious that:

id, o(id, +id,) = id, oid, = id, = id, +id, = (id, oid,) + (id, oid,),
(id, +1d,) o id, = id, oid, = id, = id, +id, = (id, oid,) + (id, oid,).

This shows that the category constructed in Example 1.1.2 is, in fact, pread-
ditive.
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While the simplest category is preadditive, not all categories share this
property. In the next example, we will see that the category of sets is not
preadditive.

Example 1.3.3. Notice that the category of sets (see Example 1.1.3) is not
preadditive, as it is not locally small.

Similarly, other categories may fail to be preadditive due to the lack of
appropriate structure on their hom-sets. In the next example, we will see two
such categories.

Example 1.3.4. Notice that the category constructed in Example 1.2.8 and
the category constructed in Example 1.2.13 are not preadditive. In fact, in
the first case, Hom(A, B) = Hom(C, B) = () are not groups, and in the second
case, Hom(B, A) = Hom(B, C') = {) are not groups.

Preadditive categories have several important properties that distinguish
them from general categories. The following proposition highlights some of
these properties, including the relationship between initial and terminal ob-
jects and the duality between products and coproducts.

Proposition 1.3.5. Let C be a preadditive category.

(a) An object of € is initial if and only if it is terminal.

(b) Let n be a non-negative integer and {A,...,A,} be a finite subset of
Obj. If the product of Ay, ..., A, exists, then their coproduct also exists.
Moreover, in this case, the product of Ay,..., A, is isomorphic to their
coproduct.

(c¢) Let n be a non-negative integer and {A;,..., A,} be a finite subset of
Obj. If the coproduct of Ay, ..., A, exists, then their product also exists.
Moreover, in this case, the coproduct of Ay, ..., A, is isomorphic to their
product.

Proof. We will prove each part of this proposition separately.

(a) Suppose [ is an initial object in the category €. We want to prove that [
is also terminal, that is, we want to show that, for every object X in C,
the set Hom(X, I) contains exactly one morphism.

Let X be an object of . Since C is assumed to be a preadditive
category, we know that Hom(X, /) is non-empty and, moreover, forms a
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group. Therefore, showing that Hom(X, ') contains exactly one element is
equivalent to showing that the only morphism in Hom(X, I) is the neutral
element of this group.

To prove this, observe that, since I is an initial object, the set Hom(7, I)
contains exactly one element, namely id;, which is the neutral element of
this group. Thus, for every f € Hom(X, I), we have:

led[Of:<1d]+ld]>of:1d10f+ld10f:f+f

This implies that f is, in fact, the neutral element of the group Hom (X, I).

Now, suppose T' is a terminal object in the category €. We want to
show that T is also initial, that is, we want to show that, for every object
X in €, the set Hom(7', X) contains exactly one morphism.

Let X be an object of C. Since C is assumed to be a preadditive
category, we know that Hom(7T, X) is non-empty and, moreover, forms a
group. Therefore, showing that Hom(7', X') contains exactly one element
is equivalent to showing that the only morphism in Hom(7, X) is the
neutral element of this group.

To prove this, observe that, since T' is terminal, the set Hom(7',T)
contains exactly one element, namely idr, which is the neutral element of
this group. Thus, for every f € Hom(T', X), we have:

f:foldT:fO<ldT—|—1dT):fOIdT+fOIdT:f+f

This implies that f is, in fact, the neutral element of the group Hom(7', X).

For simplicity of notation, we will prove the case n = 2. The general case
follows analogously.

Let (P, p1,p2) be the product of A; and A,. By definition, this means
that P € Obj, p1 € Hom(P, A;), po € Hom(P, As), and that, for every
triple (X, fi1, fo) with X € Obj, fi € Hom(X, A;), and f, € Hom(X, As),
there exists a unique F' € Hom (X, P) such that pjoF' = f; and pyoF' = fs.
We will use this property to construct morphisms ¢; € Hom(A;, P) and
1y € Hom( Ay, P) such that (P, t1,t9) is the coproduct of A; and As.

To construct ¢; and ¢, we also use the hypothesis that € is a preadditive
category. In fact, it is this hypothesis that allows us to choose neutral
elements 0; 5 € Hom(A;, As) and 027 € Hom(As, A;). Then, for the triple
(Ay,id4,,019), there exists a unique morphism ¢; € Hom(A;, P) such that

prot =idy, and pyoi; = 050.
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Similarly, for the triple (A, 091,1id4,), there exists a unique morphism
1y € Hom(A,, P) such that

P10 Ly = 0271 and P2 O lg = idAQ .

To complete the proof of this part, we will show that (P, ¢1,t9) is the
coproduct of A; and A,. To do this, let X be an object in Obj, let f; be
a morphism in Hom(A;, X), and let f; be a morphism in Hom(A,, X).
The morphism F € Hom(P, X) such that F oty = f; and F o1y = f5 is
explicitly given by F' = (f1 o p1) + (f2 0 p2). In fact,

Fou=((fiop)+(faop2))ou
=(fiop)ou+(faop)on
= fio(prou)+ fao(paon)
= fioida, +f20012
=/

and

Fouw=((fiop1)+ (f20p2)) 0t
= (fiopi)ota+ (faop2) oLy
= fio(prote)+ fao(paoia)
= f10021 + fa0idy,
= f2.

This shows that (P, t1,t9) is the coproduct of A; and Ay, and completes
the proof of this part.

(c) Again, for simplicity of notation, we will prove the case n = 2, since the
general case is completely analogously.

Let (C,i1,1i2) be the coproduct of A; and As. By definition, this means
that C' € Obj, i1 € Hom(A;,C), i € Hom(Ay, C), and that for every
triple (X, f1, f2) with X € Obj, f1 € Hom(A;, X), and f, € Hom(A,, X),
there exists a unique morphism F' € Hom(C, X) such that F oi; = f
and F oiy = f5. We will use this property to construct morphisms p; €
Hom(C, Ay) and ps € Hom(C, As) such that (C,py,ps) is the product of
A; and As.

To construct p; and ps, we also use the hypothesis that € is a preadditive
category. In fact, it is this hypothesis that allows us to choose neutral
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elements 0; 5 € Hom(A;, As) and 027 € Hom(As, Ay). Then, for the triple
(A1,09,1,1dy, ), there exists a unique morphism p; € Hom(C, A;) such that

proip =idy, and proiy = 02,1

Similarly, for the triple (As,ida,,012), there exists a unique morphism
po € Hom(C, As) such that

peoi; =012 and pyoiy=idy,.

To complete the proof, we will show that (C,py, ps) is the product of
A; and As. To do this, let X be an object in Obj, let f; be a morphism
in Hom(X, A;), and let f; be a morphism in Hom(X, Ay). The morphism
F € Hom(X, C) such that p; o F' = f; and py o F' = f5 is explicitly given
by F'= (i1 0 f1) + (iz 0 f2). In fact,

proF =pio((irofi)+ (i20f2))
=pio(iyo fi)+pio(izo fo)
= (p1oii)o fi+ (p1oia)o fo
=ida, of1 + 021 0 fo

=h
and
p2o F =pyo((iro fi) + (iz0 f2))
=pao(iyo fi) +pao(izo fo)
= (p2oii)o fi+ (p2oia) o fo
= 0120 f1 +ida, ofs
= Jfa
This shows that (C, py, ps) is the product of A; and As. O

1.4. ADDITIVE CATEGORIES

Additive categories are a natural generalization of preadditive categories,
providing a framework for studying categories with additional structure, such
as finite products and coproducts. In this section, we will define additive
categories and explore their properties through concrete examples.

Definition 1.4.1. A category € is said to be additive when:

(i) € is a preadditive category,
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(ii) there exists an initial or a terminal object in Obj,

(iii) for every pair of objects A, B € Obj, their product or their coproduct
exists within C.

Recall from Proposition 1.3.5(a) that, in a preadditive category, an object is
initial if and only if it is terminal. This explains the or in condition (ii) above.
Then, recall from Proposition 1.3.5(b) and (¢) that, in a preadditive category,
the product of two objects exists if and only if their coproduct exists. This
explains the or in condition (iii) above.

Further, recall from Proposition 1.2.14 that (in any category) the empty
product is a terminal object and from Proposition 1.2.20 that the empty co-
product is an initial object. Thus, one could condense conditions (ii) and (iii)
above in one condition that requires every finitary product to exist within C.

To better understand the abstract definition of additive categories, we will
consider some concrete examples. We will start with the simplest possible
category and then explore more complex cases.

Example 1.4.2. The category with one object and one morphism (constructed
in Example 1.1.2) is additive. In fact, recall from Example 1.3.2 that this cate-
gory is preadditive. Further, recall from Example 1.2.5 that the unique object
in this category is initial and terminal. Finally, recall from Example 1.2.10
that product of this object with itself is itself and from Example 1.2.16 that
the coproduct of this object with itself is itself. This justifies that the category
with one object and one morphism is additive.

While the simplest category is additive, not all categories share this property.
In the next example, we will see that the category of sets is not additive because
it is not even preadditive.

Example 1.4.3. Recall from Example 1.3.3 that the category of sets is not
preadditive. Thus, it cannot be an additive category.

Not all preadditive categories are additive. In the next example, we will
construct a category that is preadditive but fails to be additive due to the lack
of an initial or terminal object.

Example 1.4.4. Now we will construct a category that is preadditive and not
additive. First, let Obj consist of a unique element, Obj = {x}, Mor (which
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is the same as Hom(*, %)) consist of two morphisms, Mor = {id,, f}, and the
composition be given by
id, oid, =idy, id,of = foidy,=f and fof=7f.
Then, endow Hom(*,x) with the structure of the abelian group Z:
id, +id, = f, idy+f=f+idi=id, and f+ f=F.
Now, we check that this category is preadditive:
(idy +1id,) oidy = foid, = f =id, +id, = (id, 0idy) + (id, 0idy),
(idi+idi)o f=fof=f=[f+f=(dof)+ (idof),
(idy +f) oidy = id, 0idy = idy = id, +f = (ids 0idy) + (f 0 idy),
(ide +f) o f=idiof = f=f+ f=(idcof) + (fo f),
(f + f)oidi = foidi = f = f+4 f = (foid) + (f oidy),
(f+fef=fof=Ff=Ff+f=(fof)+(fof)
Notice that what these calculations show is that the triple (Mor, +, o) is in fact

a ring. Namely, a ring isomorphic to Zs (with the isomorphism being given by
0 fand 1+ id,).

To complete this example, notice the only object in this category, x, is not
initial (nor terminal), because Hom(x, x) contains two morphisms.

1.5. CONSTRUCTIONS IN CATEGORIES 11

1.5.1. Equalizers. In category theory, the concept of equalizer is used to
formalize the idea of commonality between two morphisms. More specifically,
it provides a way to characterize the universal object through which both
morphisms agree.

Definition 1.5.1. Given a category C, two objects A, B € Obj, and two
morphisms f, g € Hom(A, B), the equalizer of f and g is a pair (F,e) where:
(i)
(ii) e € Hom(E, A),
(iii) foe=goe,
)

(iv) for every object X € Obj and morphism h € Hom(X, A) such that foh =
g o h, there exists a unique morphism v : X — F such that eou = h.
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This first example of equalizer illustrates how the definition of equalizer
applies to the situation where we have two equal morphisms, and shows how
the equalizer is realized concretely as the domain of this morphism.

Example 1.5.2. Let € be a category, let A and B be two objects in Obj, and
let f € Hom(A, B) be a morphism. The equalizer of f and itself is the pair
(A,id,). To justify this claim, notice that:

(i) A € Obj,

(i) ids € Hom(A, A),
(iii) foidy = foida,
(iv) for every object X € Obj and every morphism h € Hom(X, A) (such that

foh= foh), the morphism u = h is the only morphism in Hom(X, A)
such that id4 ou = h.

In the next example, we will construct the equalizer of two functions in the
category of sets (see Example 1.1.3). In this case, the equalizer is realized as
the largest subset in which these two functions agree.

Example 1.5.3. Let A, B be two sets, and let f,g: A — B be two functions.
The equalizer of f and ¢ is the pair (E,e), where FE is the set defined by

E:={ae Al f(a) = g(a)},
and e is the inclusion of F into A, that is, the function
e:E— A  definedby e(z)=2 foralzekFE.
To justify this claim, notice that:

(i) E is a subset of A, that is, an object of the category of sets,
(ii) e is a function, that is, a morphism in the category of sets,
(iii) for every x € E, we have f(e(x)) = f(x) = g(z) = g(e(z)),
(iv) for every set X and every function h : X — A such that foh = goh,
notice that h(z) € E for all x € X (since f(h(x)) = g(h(z))). Hence, if

one chooses u : X — FE to be defined by u(z) = h(x), then one obtains
that e(u(x)) = e(h(z)) = h(z) for all z € X.

With these concrete examples in hand, we now turn to a key result: the
uniqueness (up to isomorphism) of equalizers when they exist. That is, the
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next result establishes that any two equalizers of a given pair of morphisms
are isomorphic.

Proposition 1.5.4. Let C be a category, A, B be two objects in Obj, and f, g
be two morphisms in Hom(A, B). If (E,e) and (E’, ¢') are equalizers of f and
g in C, then E is isomorphic to E’.

Proof. From the definition of equalizers and the hypothesis that (F,e) and
(E',€) are equalizers of f and g, we know that £ and E’ are objects of C, that
e is a morphism in Hom(E, A) such that eo f = eog, and that €’ is a morphism
in Hom(E’, A) such that ¢’ o f = ¢’ o g. Moreover, since (F,e) and (F’,¢)
are equalizers of f and g, there exist unique morphisms u € Hom(FE, E’) and
v € Hom(E', E) such that eou = ¢’ and ¢ ou’ = e. We will show that u and
u' are isomorphisms.

To do this, we begin by substituting the equations into each other:

¢ =ecou=(eou)ou=¢€o(uou),

"=eo(uou).

e=¢ou =(eou)ou
To complete this proof, we will show that «' ou = idg and uw o = idg. In
fact, since (F,e) is an equalizer of f and g, there exists a unique morphism
v € Hom(E, E) such that eov = e. Since v = wo v and v = idg satisfy
this condition, it follows that u o ' = idg. Similarly, since (E',¢') is an
equalizer of f and g, there exists a unique morphism v € Hom(E’, E’) such
that ¢’ ov’ = €’. Since v/ = v/ ou and v/ = idg satisfy this condition, it follows
that v/ o u = idg. O

The previous proposition guarantees the uniqueness of equalizers up to iso-
morphism, but it is important to note that equalizers do not always exist. We
finish this subsection with an example that illustrates a situation in which the
equalizer does not exist.

Example 1.5.5. Consider a category with two objects, Obj = {4, B}, and
four morphisms, Mor = {id4, f, g,idg}, where

{id4} = Hom(A,A), {f,¢g} =Hom(A,B) and {idg} = Hom(B, B).

A diagrammatic picture of this category is the following:
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f

ida( AT BT )idy
g

Now, we will show that no equalizer of f and ¢ exists. In fact, if this
equalizer (F,e) existed, then E would have to be an object in Obj = {A, B}
and e would have to be a morphism in Hom(E, A) such that foe = goe.
Since Hom(B, A) = (), then E would have to be A and e would have to be id4.
However, f oidy # g oid. This explains why no equalizer of f and g exists.
(See Example 1.5.7 for a more subtle situation in which morphisms have no
equalizers.)

1.5.2. Kernels. In a preadditive category, kernels are a special case of equal-
izers. They formalize the idea of the “preimage of zero” for a morphism. More
specifically, kernels provide a way to characterize the universal object that
maps to zero under a given morphism.

Definition 1.5.6. Given a preadditive category €, two objects A, B € Obj,
and a morphism f € Hom(A, B), the kernel of f is defined to be the equalizer
of f and the zero morphism in the abelian group Hom(A, B).

In a more explicit way, the kernel of a morphism f € Hom(A, B) is an
object ker(f) € Obj together with a morphism k& € Hom(ker(f), A) satisfying
the following conditions:

e fok=00k=0 in the abelian group Hom(ker(f), B),

e for every pair (X, h), where X is an object of € and h € Hom(X, A) is
a morphism satisfying f o h = 0 € Hom(X, B), there exists a unique
morphism v € Hom(X, ker(f)) such that ko u = h.

It is important to note that the condition that € is preadditive is essential
in Definition 1.5.6. Without the ability to define zero morphisms, the concept
of a kernel cannot be formulated. For example, kernels cannot be defined in
the category of sets, as it is not preadditive (see Example 1.3.3).

Additionally, since equalizers are unique up to isomorphism (see Proposi-
tion 1.5.4), kernels are also unique up to isomorphism.

In the following examples, we present cases where kernels do and do not
exist.
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Example 1.5.7. Consider a category € with one object, Obj = {x}. Recall
from Example 1.4.4 that, in this case, for € to be a preadditive category,
one must endow Mor (which is equal to Hom(x,*)) with a ring structure,
(Mor, +,0). In this example, we will choose the ring Zs x Zy. That is, Mor
will have four elements,

Mor = Hom(x, %) = {(0,0), (0,1), (1,0), (I, 1)},

its addition will be given by component-wise addition modulo 2, and its com-
position will be given by component-wise multiplication modulo 2.

Now we will show that the kernel of the morphism (0,1) does not exist.
In fact, recall that the kernel of (0,1) is a pair (K, k), where K € Obj and
k € Hom(K,x) such that (0,1) o k = (0,0). Since Obj = {x}, then K = x;
and, since

0.0060,0) = 0.D6(1.3) = (©0,0) and @101 = G T) = 0.,
then k = (0,0) or k = (1,0).
To justify that the pair (x, (0,0)) is not the kernel of (0, 1), notice that, if

we take the pair (X,h) = (%,(1,0)), then (0,1) o h = (0,0) but there exists
no morphism u € Hom(x,*) such that (0,0) o u = h. Now, to justify that
the pair (%, (1,0)) is not the kernel of (0, 1), notice that, if we take the pair
(X,h) = (x,(0,0)), then (0,1) o h = (0,0) and there exist two morphisms
u € Hom(x, ) such that (1,0) o u = (0,0), namely, v = (0,0) and u = (0, 1).

This shows that the kernel of the morphism (0, 1) does not exist. Similarly,
one can show that there is no kernel for the morphism (1,0) in this category.

In the previous example, we saw a situation where the kernel of a morphism
does not exist. In the next example, we turn to a more familiar setting: the
category of vector spaces, where kernels always exist and correspond to the
classical notion of the kernel of a linear map.

Example 1.5.8. Let k be a field (for example, R). Consider the category
whose objects are all k-vector spaces, whose morphisms are all linear trans-
formations between k-vector spaces, and whose composition is given by the
usual composition of linear transformations (or, equivalently, functions). One
can check that this structure forms a category, which is locally small.

One can also introduce a structure of abelian group on its hom-sets. Namely,
if V and W are k-vector spaces, then the set Hom(V, W) is an abelian group
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when endowed with the function + : Hom(V, W) x Hom(V, W) — Hom(V, W)
defined by

(T+S)v):=T(w)+Sw) ¢ W for all T,S € Hom(V,W).
Thus, the morphism 0 € Hom(V, W) is explicitly given by 0(v) = oy for all
veV.

Hence, the kernel of a morphism 7" € Hom(V, W) is the pair (ker(T), k),

where:
e ker(7') is the usual kernel of linear transformations,
ker(T) ={v eV |T(v) = ow},
e k is the inclusion of ker(7") into V/,
k:ker(T) — V explicitly given by k(v) =

In fact, since ker(7) is a vector subspace of V, it is also a k-vector space.
Moreover, k is a k-linear transformation, since

]{7(1)1 + )\Ug) =V + )\’UQ = /{Z(’Ul) + )\]{7(1)2)

Finally, if (X, h) is a pair where X is a k-vector space and h : X — V is
a k-linear transformation such that 7o h = 0, then h(x) € ker(T) for all
x € X. This implies that the inclusion u : X — ker(T") is the unique linear
transformation that satisfies ko u = h.

1.5.3. Coequalizers. In category theory, the concept of coequalizer formal-
izes the idea of identifying elements mapped to the same place by two mor-
phisms. It achieves this by defining a universal object which enforces this
identification.

Definition 1.5.9. Given a category C, two objects A, B € Obj, and two
morphisms f,g € Hom(A, B), the coequalizer of f and g is a pair (@), q) where:

(i) @ € Obj,
(ii) ¢ € Hom(B Q),
(i) go f=qouy,
(iv) for every object X € Obj and morphism & € Hom(B, X) such that ko f =
ko g, there exists a unique morphism v € Hom(Q), X) such that voq = k.
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The first example of a coequalizer will illustrate how the definition of a
coequalizer applies in the case where the two morphisms are equal. In this
case the coequalizer is realized concretely as the codomain of this morphism.

Example 1.5.10. Let € be a category, let A and B be two objects in Obj,
and let f € Hom(A, B) be a morphism. The coequalizer of f and itself is the
pair (B,idg). To justify this claim, notice that:

(i) B € Obj,

(i) idp € Hom(B, B),
(iii) idg of = idp of,
(iv) for every object X € Obj and every morphism k& € Hom(B, X) (such that

ko f = ko f), the morphism v = k is the only morphism in Hom(B, X)
such that voidg = k.

In the next example, we will construct the coequalizer of two functions in
the category of sets (see Example 1.1.3). Here, the coequalizer corresponds to
the quotient set that identifies elements that map to the same element under
these two functions.

Example 1.5.11. Let A, B be two sets and let f,g: A — B be two functions.
To construct the coequalizer of f and ¢, consider the equivalence relation in
B generated by f(a) ~ g(a) for all @ € A. That is:

e for every b € B, we have b ~ b,

e if b= f(a) ~ g(a) =1 for some a € A, then b’ = g(a) ~ f(a) =0,

o if b = f(a) ~ gla) =¥V for some a € A and O/ = f(d') ~ g(a') = b" for

some a’ € A, then b ~ b".

Then, define @) to be the set of equivalence classes with respect to the equiva-
lence relation ~. If we denote by [b] the equivalence class to which an element
b € B belongs, then:

Q@ =A{[b] | b€ B}.
Notice that () is a set and that there exists a function
qg:B—Q defined by q(b) = [b] forall be B.
The pair (@Q, q) is the coequalizer of f and g.
To justify this claim, notice that:
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(i) @ is a quotient set of B, that is, an object of the category of sets,
(ii) ¢ is a function, that is, a morphism in the category of sets,
(iii) since f(a) ~ g(a) for every a € A, we have

q(f(a)) = [f(a)] = [g(a)] = q(g(a)),

(iv) for every set X and every function k : B — X such that ko f = ko g, we
can define a function v : Q@ — X by v([b]) = k(b). In fact, to justify that
this is a function, notice that, if [b] = [b'], then k(b) = k(D). Moreover,
by definition, this function v satisfies v o ¢ = k. On the other hand, if
voq =k, then v([b]) = k(b) for all b € B. This shows the uniqueness of
v.

Moving on from the concrete examples, we now prove a key result: the
uniqueness (up to isomorphism) of coequalizers when they exist. In other
words, this next result establishes that any two coequalizers of a given pair of
morphisms are isomorphic.

Proposition 1.5.12. Let C be a category, A, B be two objects in Obj, and
f, g be two morphisms in Hom(A, B). If (Q,¢) and (@', ¢') are coequalizers of
f and g, then @ is isomorphic to '

Proof. From the definition of coequalizers and the hypothesis that (@), ¢) and
(Q',q') are coequalizers of f and g, we know that () and @)’ are objects of
C, that ¢ is a morphism in Hom(B, @) such that ¢ o f = g o g, and that
¢ is a morphism in Hom(B, Q') such that ¢ o f = ¢’ o g. Moreover, since
(@, q) and (@', ') are coequalizers of f and g, there exist unique morphisms
v € Hom(Q, Q') and v' € Hom(Q', Q) such that vog=¢ and v o ¢ =¢q. We
will show that v and v’ are isomorphisms.

To do this, we begin by substituting the equations above into each other:
¢ =vog=vo(vog)=(vov)oq,
g=vo¢ =vo(woq)=(vov)ogq.
To complete this proof, we will show that v' ov = idg and vo v =idg. In
fact, since (@, q) is a coequalizer of f and g, there exists a unique morphism
w € Hom(Q, Q) such that woq = ¢. Since w = v' ov and w = id satisfy this
condition, it follows that v’ o v = idg. Similarly, since (@', ¢') is a coequalizer

of f and g, there exists a unique w’ € Hom(Q', Q') such that w'oq’ = ¢’. Since
w' =wvov and w' = id¢ satisfy this condition, it follows that vov' =idg. O
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The previous proposition guarantees the uniqueness of coequalizers up to
isomorphism, but it is important to note that coequalizers do not always exist.
We finish this subsection with an example that illustrates a situation in which
the coequalizer does not exist.

Example 1.5.13. Consider a category with two objects, Obj = {A, B}, and
four morphisms, Mor = {id 4, f, g,idg}, where

{id4} = Hom(A,A), {f,¢g} =Hom(A,B) and {idg} = Hom(B, B).

A diagrammatic picture of this category is the following:

f

ida( AT BT )idg
9

Now, we will show that no coequalizer of f and g exists. In fact, if this
coequalizer (@, q) existed, then @) would have to be an object in Obj = { A, B}
and ¢ would have to be a morphism in Hom(B, @) such that go f = gog.
Since Hom(B, A) = (), then @) would have to be B and g would have to be idp.
However, idg of # idg og. This explains why no coequalizer of f and g exists.
(See Example 1.5.15 for a more subtle situation in which morphisms have no
coequalizers. )

1.5.4. Cokernels. In a preadditive category, cokernels are a special case of
coequalizers. They formalize the idea of “quotient by the image” of a mor-
phism. More specifically, cokernels provide a way to characterize the universal
object that maps the image of a given morphism to zero.

Definition 1.5.14. Given a preadditive category C, two objects A, B € Obj,
and a morphism f € Hom(A, B), the cokernel of f is defined to be the co-
equalizer of f and the zero morphism in the abelian group Hom(A, B).

In a more explicit way, the cokernel of a morphism f € Hom(A, B) is an
object coker(f) € Obj together with a morphism ¢ € Hom(B, coker(f)) satis-
fying the following conditions:

e go f=gqo0 =0 in the abelian group Hom(A, coker(f)),

e for every pair (Y, h), where Y is an object of € and h € Hom(B,Y) is
a morphism satisfying h o f = 0 € Hom(A,Y), there exists a unique
morphism v € Hom(coker(f),Y’) such that voq = h.
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It is important to note that the condition that € is preadditive is also es-
sential in Definition 1.5.14. Without the ability to define zero morphisms, the
concept of a cokernel cannot be formulated. For example, cokernels cannot be
defined in the category of sets, as it is not preadditive (see Example 1.3.3).

Additionally, since coequalizers are unique up to isomorphism (see Proposi-
tion 1.5.12), cokernels are also unique up to isomorphism.

In the following examples, we present cases where cokernels do and do not
exist.

Example 1.5.15. Consider a category with one object, Obj = {x}, and with
Mor (which is equal to Hom(*, ) in this case) endowed with a ring structure,
(Mor, +, o), isomorphic to Zg X Zsy (see Example 1.5.7 for the details). We will
show that the cokernel of the morphism (0, 1) does not exist in this category.

In fact, recall that the cokernel of (0,1) is a pair (Q, q), where Q € Obj and
q € Hom(x, @) such that go (0,1) = (0,0). Since Obj = {%}, then Q = *; and,

(0,0)0(0,1) = (1,0)0(0,1) = (0,0) and (0,1)0(0,1) =(1,1)0(0,1) = (0,1),
then ¢ = (0,0) or ¢ = (1,0).

To justify that the pair (%, (0,0)) is not the cokernel of (0,1), notice that,
if we take the pair (Y, h) = (x,(1,0)), then ho (0,1) = (0,0) but there exists
no morphism v € Hom(x,*) such that v o (0,0) = (1,0). Now, to justify
that the pair (%, (1,0)) is not the cokernel of (0, 1), notice that, if we take the
pair (Y, h) = (%,(0,0)), then ho (0,1) = (0,0) and there exist two morphisms
v € Hom(*,*) such that v o (1,0) = (0,0), namely, v = (0,0) and v = (0, 1).

This shows that the cokernel of the morphism (0,1) does not exist in this

category. Similarly, one can show that the morphism (1,0) also has no cokernel
in this category.

In the previous example, we saw a situation where the cokernel of a mor-
phism does not exist. In the next example, we turn to a more familiar setting:
the category of vector spaces, where cokernels always exist and correspond to
the classical notion of the cokernel of a linear map.

Example 1.5.16. Let k be a field (for example, R) and consider the category
of k-vector spaces (constructed in Example 1.5.8). The cokernel of a morphism
T € Hom(V, W) is the pair (coker(T), q), where:
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e coker(T) is the usual cokernel of the linear transformation 7, that is, the
quotient of the codomain of T" by its image,

coker(T') = W/im(T);
e ¢ is the canonical projection
q: W — coker(T), explicitly given by ¢(w) = [w].

In fact, notice that, since im(7") is a vector subspace of W, then coker(7) is a
quotient vector space. Moreover, ¢ is a k-linear transformation, since

q(wy + Awsy) = [wy + Aws] = [wy] + Nws| = q(wq) + Ag(w2).

Finally, if (X, k) is a pair where X is a k-vector space and k: W — X is a k-
linear transformation such that ko7 = 0, then k factors through coker(7), as
im(7’) is in its kernel. Thus, the isomorphism theorems from Linear Algebra
imply that there exists a unique linear transformation v : coker(7) — X
satisfying vo g = k.

1.6. PRE-ABELIAN CATEGORIES

In this section, we will introduce pre-abelian categories, which are an inter-
mediate step between additive and abelian categories.

Definition 1.6.1. A category C is said to be pre-abelian if € is an additive
category in which the kernel and cokernel of all morphisms exist.

To define pre-abelian categories in more detail, recall that an additive cate-
gory is defined as a pre-additive category in which finite products or coproducts
of its objects (including the empty ones) exist. Then, recall that a pre-additive
category is defined as a category in which Hom(A, B) admits the structure of
an abelian group for every pair of objects A, B. Hence, a pre-abelian category
is a locally small category for which:

e Hom(A, B) admits the structure of an abelian group for every pair of
objects A, B in C;

e finite products and coproducts of objects in € exist;

e the kernel and cokernel of every morphism in € exist.

In the next example, we will show that the category of vector spaces over a
field (defined in Example 1.5.8) is pre-abelian. This example illustrates how
pre-abelian categories naturally arise in familiar algebraic settings.
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Example 1.6.2. Let k be a field, and let C be the category of k-vector spaces.
Recall from Example 1.5.8 that C is an additive category. Also recall from
Example 1.5.8 that the kernel of a morphism in € is the usual kernel of this
morphism, viewed as a linear transformation (as defined in an undergraduate
Linear Algebra class). Then, recall from Example 1.5.16 that the cokernel of a
morphism (that is, a linear transformation) 7' € Hom(V, W) is the pair (Q, q),
where ) = W/im(T') and ¢ is the canonical projection ¢ : W — @, explicitly
given by ¢(w) = w + im(7"). This shows that the category of k-vector spaces
is a pre-abelian category.

In the previous example, we showed a very concrete case of a pre-abelian
category. However, not all additive categories are pre-abelian. In the next ex-
ample, we will exhibit an additive category that fails to be pre-abelian because
it lacks kernels and cokernels for certain morphisms.

Example 1.6.3. Consider the category with one object, Obj = {*}, and
whose morphisms, Mor = Hom(x,x), are identified with the ring Zs x Z,.
This category was constructed in detail in Example 1.5.7, where it was also
shown to be additive.

Since Hom(x, ) is identified with Zs x Zs, we can denote the morphisms in
Hom(x,*) by (0,0), (0,1), (1,0), and (1,1). In Example 1.5.7, it was shown
that the kernel of the morphism (0, 1) does not exist, and in Example 1.5.15, it
was shown that the cokernel of the morphism (1,0) also does not exist. Thus,
this category is not pre-abelian.

1.7. CONSTRUCTIONS IN CATEGORIES III

Monomorphisms and epimorphisms are categorical generalizations of injec-
tive and surjective maps, respectively. To extend these notions from sets and
vector spaces to general categories, one relies on the “left cancellability”, and
respectively “right cancellability”, properties of these functions. In this sec-
tion, we define these concepts and provide concrete examples.

1.7.1. Monomorphisms. In this section, we begin with the abstract defini-
tion of monomorphisms and then provide concrete examples to illustrate it.

Definition 1.7.1. Given a category € and two of its objects A and B, a
morphism f € Hom(A, B) is said to be monic (or a monomorphism) when,
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for every object X of € and every pair of morphisms g, go € Hom(X, A), we
have: fo g, = fogo if and only if ¢g; = gs.

To illustrate the abstract definition above, we begin by showing that monic
morphisms in the category of sets are nothing more than injective maps.

Example 1.7.2. If C is the category of sets (see Example 1.1.3), then a mor-
phism (that is, a function) f : A — B is monic if and only if f is injective.

To show this, we begin by assuming that f is an injective map. Now, let
X be any set, and let g1,9, : X — A be functions such that fog, = f o gs.
This means that, f(gi(z)) = f(g2(z)) for all z € X. Since f is injective, this
implies that g;(x) = go(z) for all x € X. This shows that ¢; = g¢».

Now, to show the converse, assume that f is monic. To show that f is an
injective function, let a;,a2 € A be two elements such that f(a;) = f(az).
We will show that a; = as. In fact, consider a set X with only one element,
X = {z}, and define the maps ¢1,¢2 : X — A by g1(z) = a; and ¢s2(x) = as.
Then, by construction, f o g, = f o go. Now, since f is assumed to be monic,
we have that g; = go. This implies a1 = g1(x) = go(x) = as.

Now, we will show general examples of monic morphisms that we already
considered in previous sections. We begin with isomorphisms.

Example 1.7.3. Let C be a category, A and B be two objects of €. We want
to show that, if f € Hom(A, B) is an isomorphism, then it is monic. In fact,
recall from Definition 1.2.1 that, if f is an isomorphism, then there exists a
morphism g € Hom(B, A) such that g o f =id4. Hence, if X is an object of
C and ¢1, g2 € Hom(X, A) are morphisms such that f o g; = f o gy, then:

g1 =1daogr = (gof)ogi = go(fogr) = go(fogs) = (gof)ogs =idaogs = go.

This shows that f is monic.

In the next example, we consider equalizers of morphisms. In fact, we will
show how the morphism in the equalizer pair is a monomorphism.

Example 1.7.4. Let C be a category, and let A and B be two objects of C.
Let fi, fo : A — B be two morphisms, and let (F, e) be the equalizer of f; and
fa. Then, e : E — A is a monomorphism. To justify this claim, let X be any
object, and let g1, g2 : X — F be morphisms such that eo g; = e o g,. Since e
is the equalizer of f; and f5, we have:

fro(eogs) = (frioe)oga=(face)ogy= fro(eog).
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Hence, X is an object of € and h = (e o ¢g2) is a morphism in Hom(X, A)
such that f; o h = fy o h. By the universal property of the equalizer (see
Definition 1.5.1), there exists a unique morphism u : X — FE such that eou =
h. Since eo g = h = e o go, it follows that g; = u = go. This shows that e is
a monomorphism.

To finish this section, we will determine which morphisms are monic and
which are not monic in a small pre-additive category.

Example 1.7.5. Consider a category € with a unique object, Obj = {x}.
Recall from Example 1.4.4 that a pre-additive structure on € is equivalent to
a ring structure on Mor = Hom(x,x). In this case, a morphism in Hom(x, %)
is monic if and only if it is not a left zero-divisor in the ring Hom(x, *).

We will actually show that a morphism f € Hom(x, ) is not monic if and
only if it is a left zero-divisor in Hom(x, ). To begin, assume that f is not
monic. This means that there exist distinct morphisms gy, go € Hom(x, *) such
that fog; = fogs. Since Hom(*, %) is a ring, this means that fo (g1 —¢g2) = 0;
that is, that f is a left zero-divisor. On the other hand, if f is a left zero-divisor
in Hom(x, ), then there exists a morphism g € Hom(x, ) such that g # 0 and
fog=20. Since foO=0= fogand g # 0, this implies that f is not a
monomorphism.

1.7.2. Epimorphisms. In this section, we will begin with the abstract defi-
nition of epimorphisms and then provide concrete examples to illustrate it.

Definition 1.7.6. Given a category € and two of its objects A and B, a
morphism f € Hom(A, B) is said to be an epimorphism when, for every object
Y of € and every pair of morphisms g1, g2 € Hom(B,Y), we have: gjof = gsof
if and only if g; = gs.

To illustrate the abstract definition above, we begin by showing that epi-
morphisms in the category of sets are nothing more than surjective maps.

Example 1.7.7. If C is the category of sets (see Example 1.1.3), then a mor-
phism (that is, a function) f: A — B is epi if and only if f is surjective.

To show this, we begin by assuming that f is a surjective map. Now, let Y
be any set, and let g1, g5 : B — Y be functions such that g; o f = g2 0 f. This
means that, for all a € A, ¢1(f(a)) = ¢2(f(a)). Since f is surjective, every
b € B can be written as b = f(a) for some a € A. Thus, g,(b) = g2(b) for all
b € B, which shows that g; = ¢».
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Now, to show the converse, assume that f is an epimorphism. Then, consider
the set Y = {0, 1} and the functions gy, g2 : B — Y defined by:

0, ifb¢ im(f),

b)=1 forallbe B and b) =
9:(b) 92(0) {1, if b € im(f).

Notice that Y is an object of € and g;, go are morphisms in Hom(B,Y') such
that g1of = goo f. Since f is assumed to be an epimorphism, this implies that
g1 = go; that is, every b € B belongs to im(f). This show that f is surjective.

Now, we will show general examples of epimorphisms that we already con-
sidered in previous sections. We begin with isomorphisms.

Example 1.7.8. Let C be a category, and let A and B be two objects of C.
We want to show that, if f € Hom(A, B) is an isomorphism, then it is also an
epimorphism. In fact, recall from Definition 1.2.1 that, if f is an isomorphism,
then there exists a morphism g € Hom(B, A) such that fog = idg. Hence, if Y’
is an object of € and g1, g2 € Hom(B,Y") are morphisms such that gjof = geof,
then:

g1 = g1oidp = g1o(fog) = (q1of)og = (g20f)og = g2o(fog) = g20idp = ga.

This shows that f is an epimorphism.

In the next example, we consider coequalizers of morphisms. In fact, we will
show how the morphism in the coequalizer pair is epi.

Example 1.7.9. Let C be a category, let A and B be two objects of C, let
fi, f2 : A — B be two morphisms, and let (@), q) be the coequalizer of f; and
fa. Then, ¢ : B — @ is an epimorphism. To justify this claim, let Y be an
object of C and g1, g2 : @ — Y be morphisms such that ¢; o ¢ = g» 0 ¢. Since
q is the coequalizer of f; and fo, we have:

(grog)ofi=gio(go fi)=gio(qo fo) =(g109) 0 fo.
Hence, Y is an object of € and k := (g1 0 ¢) is a morphism in Hom(B,Y') such
that ko fi = ko fy. From the definition of coequalizer, Definition 1.5.9, there
exists a unique morphism v € Hom(Q, Y') such that (g, 0q) = k = vogq. Since
g10q =gy 0q, then gg = v = g9. This shows that ¢ is an epimorphism.

To finish this section, we will determine which morphisms are epi and which
are not epi in a small pre-additive category.
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Example 1.7.10. Consider a category € with a unique object, Obj = {x}.
Recall from Example 1.4.4 that a pre-additive structure on C is equivalent to
a ring structure on Mor = Hom(x,x). In this case, a morphism in Hom(*, %)
is epi if and only if it is not a right zero-divisor in the ring Hom (%, x).

We will actually show that a morphism f € Hom(x,*) is not epi if and
only if it is a right zero-divisor in Hom(*,x). To begin, assume that f is
not an epimorphism. This means that there exist g1, g2 € Hom(x,*) distinct
morphisms such that g; o f = g2 o f. Since Hom(*,«) is a ring, this means
that (g1 — ¢2) o f = 0; that is, that f is a right zero-divisor. On the other
hand, if f is a right zero-divisor in Hom(x, %), then there exists a morphism
g € Hom(x,*) such that ¢ # 0 and go f = 0. Since 0o f =0 = go f and
g # 0, this implies that f is not an epimorphism.

1.8. ABELIAN CATEGORIES

Abelian categories are a central concept in homological algebra and category
theory. They provide a natural setting for studying exact sequences, homology,
and cohomology, as they generalize the properties of categories like vector
spaces and abelian groups. We will begin this section woth their abstract
definition and then illustrate it with concrete examples.

Definition 1.8.1. A category is said to be abelian when it is a pre-abelian
category, and moreover, every monomorphism is the kernel of a morphism and
every epimorphism is the cokernel of a morphism.

To define abelian categories in more detail, recall from Definition 1.6.1 that a
category is pre-abelian when it is additive and the kernel and cokernel of every
morphism exist. Then, recall from Definition 1.4.1 that a category is additive
when it is a pre-additive category in which finite products or coproducts of its
objects (including the empty ones) exist. Finally, recall from Definition 1.3.1
that a pre-additive category is one in which Hom(A, B) admits the structure
of an abelian group for every pair of objects A, B, and composition is bilinear.
Hence, an abelian category is a locally small category such that:

e Hom(A, B) admits a structure of an abelian group for every pair of objects
A, B in C;

e finite products and coproducts of objects in € exist;

e the kernel and cokernel of every morphism in € exist;
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e every monomorphism is the kernel of some morphism, and every epimor-
phism is the cokernel of some morphism.

To illustrate this abstract definition, we will consider some concrete exam-
ples. We begin with the down-to-earth example of vector spaces.

Example 1.8.2. For every field k, the category of k-vector spaces is abelian.
To begin justifying this, we recall from Example 1.6.2 that this category is
pre-abelian.

Moreover, to show that every monomorphism in this category is the kernel of
another morphism, notice that, if a morphism (that is, a linear transformation)
T :V — W is monic, then it is injective (compare with Example 1.7.2), and
hence V' is isomorphic to im(7"), which is a vector subspace of W. Thus,
the pair (V,T) is the kernel of the canonical projection ¢ : W — W/im(T),
explicitly given by ¢(w) = w + im(7T). This shows that every monomorphism
in this category is the kernel of another morphism.

Finally, to show that every epimorphism is the cokernel of another mor-
phism, notice that, if a morphism 7" : V' — W is epi, then it is surjective
(compare with Example 1.7.7). Hence, the Isomorphism Theorems imply that
the pair (W,T) is (isomorphic to) the cokernel of the inclusion morphism
v : ker(T) — V, explicitly given by ¢(v) = v.

Next, we consider the category of abelian groups, whose objects are abelian
groups and whose morphisms are group homomorphisms. This is a fundamen-
tal example of an abelian category. This example will also work as a review
of the concepts introduced so far.

Example 1.8.3. The category of abelian groups, usually denoted by Ab,
consists of abelian groups and their morphisms. More explicitly, the objects
of the category Ab are all abelian groups; the morphisms of Ab are all group
homomorphisms between abelian groups, that is, Hom(A, B) is the set of all
group homomorphisms A — B; and the composition of morphisms in Ab is
the usual composition of functions.

Recall (from Example A.12) that, if G, H, K are (abelian) groups and
f:G— H,g: H— K are group homomorphisms, then the composition (g o
f) : G — K is also a group homomorphism. Also recall (from Example A.12)
that, for every (abelian) group, the identity map is a group homomorphism.
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The pre-additive structure on the category Ab is given by the following
structure on the homomorphism sets: given two abelian groups, A and B, the
set Hom(A, B) is an abelian group under operation + defined by:

(f+9)(a):= f(a) +, g(a) forall f,g € Hom(A,B) and a € A

(where +, denotes the abelian group operation in B). Since B is an abelian
group, this operation + on Hom(A, B) is associative and commutative. More-
over, the identity element in Hom(A, B) is the trivial homomorphism A — B,
that is, the function that maps every element in A to the identity element of
B. Hence, the opposite of a morphism f € Hom(A, B) with respect to this
operation + is the morphism g : A — B defined by g(a) := —(f(a)) for all
a € A. Finally, the fact that the composition of morphisms is bilinear follows
from the fact that:

((f +9) o h)(a) = (f + g)(h(a))
= f(h(a)) + g(h(a))
= (foh)(a) + (g0 h)(a)

and

(f o (g +h))(a) = f(g(a) + h(a))
= [(g(a)) + f(h(a))
= (fog)(a) + (foh)(a),

for all morphisms of abelian groups f,¢g € Hom(A, B), h € Hom(B, C), and
for all a € A.

This shows that Ab is a pre-additive category. To verify that Ab is also an
additive category, recall from Definition 1.4.1 that it is enough to construct
an initial object within Ab and the product of two objects of Ab.

The initial object in Ab is the trivial group {0} (see Example A.6). Since
0 is the only element in this group, for every set A, a function f : {0} — A
is uniquely determined by the image of 0. Moreover, since 0 is the identity of
the group {0}, for f to be a group homomorphism, 0 must me mapped to the
identity of A. This explains why there exists a unique group homomorphism
from {0} to any other abelian group.

Now, the product of two abelian groups is constructed as follows. Given
two abelian groups, A and B, consider the Cartesian product

Ax B={(a,b) |ac Abe B},
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equipped with component-wise addition, that is,
(a1,b1) + (ag, be) :== (a1 +, a2, by +, b2),

where 4, denotes the group operation in A and 4+, denotes the group op-
eration in B. Since +, and +, are associative and commutative, then + is
also associative and commutative. Moreover, the identity element in A x B is
(04, 0p) and the opposite of an element (a,b) € A x B is the element (—a, —b).
Thus, A x B is an abelian group.

Then, consider the projection maps py : AXx B— Aand pg: A X B — B,
given explicitly by
pala,b) :=a and pg(a,b):=0b forall (a,b) € A X B.

The fact that ps and pg are group homomorphisms follows from the fact that
the operation + on A x B is defined component-wise:

pa((ar, b1) + (ag,b2)) = palay +, az, by +, bo)
= —I—A a9

= pA(ab bl) +, palas, b2)

and

pe((ai,b1) + (az,b2)) = pplar +, az, by +, bo)
=0b1 4+, bo
= pp(a1,b1) +, palaz, be).

Now, to show that the triple (A x B, pa, pp) is the product of A and B
in Ab, let X be an abelian group and let f4 : X — A and fg : X — B be
group homomorphisms. Notice that the function F : X — A x B given by
F(z) = (fa(z), fe(x)) is well-defined and satisfies the conditions pq o F' = fy4
and pg o F = fg. Moreover, F' is also a group homomorphism, since

F(z1 + x2) = (fa(zy + x2), f(x1 + 22))
= (falz1) +, falza), fB(21) +5 fB(72))
= (fa(z1), fB(21)) + (fa(22), fB(72)), forall 1,20 € X.

This explains why (A X B, pa, pg) is the product of A and B in Ab.
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This shows that Ab is an additive category. Now, to verify that Ab is also
pre-abelian, notice that the kernel of a morphism (that is, a group homomor-
phism) f: A — B is the pair (K, k), where:

K =ker(f):={a€ A| f(a) =ep}
and

k:K — A isdefined by k(a)=a forall a € K.

To justify this claim, recall from Proposition A.22 that the kernel of a group
homomorphism is a subgroup of its domain, and thus, an abelian group with
the inherited operation. Moreover, the function k is a group homomorphism,
since

k(ay + az) = a1 + ag = k(ay) + k(ag)  for all aj,as € K,

that satisfies the condition f ok =0, since k(a) € ker(f) for all a € K.

To complete the justification of the claim that (K, k) is the kernel of f, let
X be an abelian group and h : X — A be a group homomorphism such that
foh =0. Notice that this implies that im(h) C K. Hence, one can define a
function u : X — K by u(z) := h(z) for all x € X. This function is a group
homomorphism, since

u(xry + ) = h(xy + x2) = h(z) + h(zs) = u(xy) +u(zy) for all zy, 20 € X.

and moreover, it satisfies the condition k o u = h (by construction). Further-
more, if v : X — K is a group homomorphism that satisfies k o u = h, then
u(z) = k(u(x)) = h(z) for all x € X. This explains why w is the unique
homomorphism of groups X — K that satisfies k o u = h and completes the
proof that (K, k) is the kernel of f.

Further, to complete the verification that Ab is a pre-abelian category, we
will construct the cokernel of a morphism in Ab. Namely, the cokernel of a
morphism f : A — B is the pair (@, q) where:

Q= B/im(f) and g¢:B — B/im(f) is given by ¢(b) = b+ im(f).

To justify this claim, recall (from Proposition A.22) that, since f is a group
homomorphism, then im(f) is a subgroup of B, and since B is an abelian
group, then im(f) is a normal subgroup. Hence, the quotient B/im(f) is a
group when endowed with the structure inherited from B (see Section A.5).
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Moreover, the function ¢ is a group homomorphism, since

q(b1 + by) = (b1 + by) + im(f)
= (b1 +1im(f)) + (b2 + im(f))
= q(b1> + q(b2), for all bl, bg - B,

that satisfies the condition g o f = 0, since

q(b) =b+im(f) =0+im(f) forall b€ im(f).

To complete the justification of the claim that (Q,¢q) is the cokernel of f,
let Y be an abelian group and k£ : B — Y be a group homomorphism such
that ko f = 0. Notice that this implies that im(f) C ker(k). Hence, one can
define a function v : @ — Y by v(b+ im(f)) = k(b). Moreover, v is a group
homomorphism, since

v(b1 + be +im(f)) = k(b1 + b2)
= k(b1) + k(b2)
=ov(by +im(f)) + v(by +im(f)), forall by,bs € B,

that satisfies the condition v o ¢ = k, since v(q(b)) = v(b+im(f)) = k(b) for
all b € B. This explains why (@), q) is the cokernel of f.

This shows that Ab is a pre-abelian category. To finish this example, that
is, to finish showing that Ab is an abelian category, we will show that ev-
ery monomorphism in Ab is the kernel of another morphism and that every
epimorphism in Ab is the cokernel of another morphism.

To show that every monomorphism in Ab is the kernel of another morphism,
notice that, if a morphism (that is, a group homomorphism) f : G — H is
monic, then it is injective (compare with Example 1.7.2). Hence, in this case,
G is isomorphic to im(f). Thus, the pair (G, f) is the kernel of the canonical
projection ¢ : H — H/im(f), explicitly given by ¢(h) = h+im(f). This shows
that every monomorphism in Ab is the kernel of another morphism.

Finally, to show that every epimorphism in Ab is the cokernel of another
morphism, notice that, if a morphism f : G — H is epi, then it is surjective
(compare with Example 1.7.7). Hence, the Isomorphism Theorems imply that
the pair (H, f) is (isomorphic to) the cokernel of the inclusion ¢ : ker(f) — G,
explicitly given by ¢(g) = g.

This shows that Ab is an abelian category and finishes this example.
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To finish this section and the first part of these notes, we will exhibit an
example of a pre-abelian category that fails to be abelian.

Example 1.8.4. Let C be the category defined as follows:
e The objects of € are the free abelian groups {0},7Z,7Z2,...,Z", ...

e For two objects Z™ and Z™ of €, the morphisms in Home(Z", Z™) are
homomorphisms of groups Z"™ — Z™.

e The composition of morphisms is given by standard composition.

This is a pre-abelian category which is not an abelian category.

The fact that € is a small category follows from: the fact that Obj(C) is a
set in bijection with the set of natural numbers, the fact that Home(Z",Z™)
is a set in bijection with the set of m x n integral matrices (for every pair of
objects n,m € Obj(€)), the fact that composition is associative, and the fact
that identity functions are the identity morphisms.

The preadditive structure on C is given by pointwise addition of group homo-
morphisms. In fact, since Z is an abelian group when endowed with its usual
addition (see Example A.2), for every pair of objects, Z",Z™ € Obj(C), the
set of morphisms Home(Z",Z™) is also an abelian group when endowed with
addition defined point-by-point. The fact that the composition of morphisms
distributes over this addition follows from the usual distributive laws of mul-
tiplications over sums of integers (see Example B.3).

To show that € is an additive category, we will verify that {0} is an initial
and final object of € and that Z"*™ is the product of the abelian groups Z"
and Z™. The fact that {0} is both an initial and final object of € follows from
the fact that the only homomorphisms of groups {0} — Z" and Z" — {0} are
the constant zero homomorphisms (for any n > 0).

To verify that Z"™™ is the product of the abelian groups Z" and Z™, denote
by p, the projection of an n + m-tuple in Z"*™ on its first n-coordinates,

Pp 2V = 77, given by pu(21, 22, Znam) = (21,225 - - -5 Zn)s
and denote by p,, the projection of an n + m-tuple in Z"™™ on its latter
m-~coordinates,
P LT = 7 given by po (21, 22, - - Znam) = (Zntts Zngos - - Zntm)-

Then, suppose that Z" is an object of € and ¢, : Z" — Z" and q,, : Z" — Z™
are homomorphisms of groups. By construction, a homomorphism of groups
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q: Z" — Z"™ satisfies p, o ¢ = ¢, and p,, 0 ¢ = ¢, if and only if it is defined
by

Q(Z> = (Qn(z)a(Jm(Z))‘
This implies that Z"™™ is the product of the abelian groups Z" and Z™, and
as a consequence, shows that C is an additive category.

To show that € is a pre-abelian category, we will show that the usual kernel
of a homomorphism of groups f : Z"™ — Z™ is its kernel viewed as a morphism
of € and that the quotient of the group Z™/im(f) by its torsion is the cokernel
of f viewed as a morphism of €.

To show that the usual kernel of a homomorphism of groups f : Z" — Z™,
{zeZ"| f(z) =0},

is the kernel of f viewed as a morphism of C, recall from Proposition A.22 that
this kernel is a subgroup of Z". Since a subgroup of a free abelian group is also
a free abelian group (see [Hun80, Theorem I1.1.6]), then ker(f) is an object of
C. Hence, we can consider the pair (K, k), where K is the usual kernel of f
and k is the inclusion of K inside Z". By construction, k is a homomorphism
of groups such that f o k = 0. Moreover, notice that, if K’ is a free abelian
group and k' : K’ — Z" is a homomorphism of groups such that f o & = 0,
then im(k’) € K. This implies that we can define a function v : K’ — K
by u(x) = k’(x). By construction, u is a homomorphism of groups satisfying
kowu = k'. The uniqueness of u follows from the fact that %k is the inclusion
(a monomorphism). This shows that the usual kernel of a homomorphism of
groups Z"™ — Z™ is its kernel in the category C.

To construct the cokernel of a morphism f : Z" — Z™ in €, we will use once
again the fact that a subgroup of a free abelian group is a free abelian group
[Hun80, Theorem II.1.6]. More specifically, we will use the fact that there exist
71,29, ...,Zy, € Z™, a natural number r < m, and integers di,d>,...,d, € Z,
such that Z™ is generated by zy, 2o, ..., %, and im(f) is the subgroup of Z™
generated by diz1, dszs, . ..,d,z,. We will thus show that the cokernel of f is
given by the pair (C,c), where C' = Z™"" and ¢ : Z™ — Z™ " is given by the
projection on the latter m — r coordinates with respect to z1, 2o, ..., 2,

c(n1zy +neZa, -+ NZm) = (i1, Npsoy - ooy M)

By construction, C' is an object of € and ¢ is a morphism of € such that
co f = 0. Moreover, if C’ is another object of € and ¢ : Z™ — C’ is another
homomorphism of groups such that ¢ o f = 0, then im(f) C ker(¢/). This
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implies that ¢/(z;) = 0, since d;d(z;) = /(diz;) = 0, for all i € {1,2,...,7}.
Thus, the function u : Z™™" — C" defined by

u(nlv na, ... anm—r) = Cl(nlzr—l-l + NoZpyg + 0+ nm—rzr)7

is a homomorphism of groups such that woc = ¢/. The uniqueness of u follows
from the fact that ¢ is surjective (an epimorphism). This shows that the pair
(C, c) is the cokernel of the morphism f : Z" — Z™ is C.

To verify that € is not an abelian category, we will show that the function
f:7Z — Z defined by f(z) = 2z is a monomorphism which is not the kernel of
any morphism in €. To verify that f is a monomorphism, let g : Z™ — Z be a
homomorphism of groups such that f o ¢ = 0. This means that

29(z) = f(g(z)) =0 forallzeZ"

and implies that g(z) = 0 for all z € Z". That is, if g : Z" — Z is a homo-
morphism of groups such that f o g =0, then ¢ = 0. This means that f is a
monomorphism.

To conclude this example, we will verify that f is not the kernel of any mor-
phism in €. To do that, we will show that, if ¢ : Z — Z" is a homomorphism
of groups such that fo¢ =0, then ¢ = 0. Hence, if f were to be the kernel of
any morphism, this morphism would have to be the constant zero morphism;
whose kernel is the identity morphism, not f (see Example 1.5.2). In fact,
suppose ¢ : Z — Z" is a homomorphisms of groups such that ¢ o f = 0. By
construction, this means that 2¢(z) = ¢(2z) = ¢(f(z)) = 0 for all z € Z,
which implies that ¢ = 0. This finishes the proof that C is a pre-abelian
category that is not abelian.



Part 11

Functors

In the first part of these notes, we concentrated on the internal structure
of categories, analysing objects, morphisms, and composition within a single
axiomatic framework. In this second part, we introduce the concept of a
functor as the fundamental means of relating categories to one another.

Functors can be understood as structure-preserving maps between cate-
gories. We begin this part by presenting the abstract definition and some
foundational examples of functors. Then, we proceed to explore several types
of functors that will be used in the other parts of these notes: faithful, full,
fully faithful, exact and adjoint functors. Along the way, we also present new
constructions: limits, colimits, images of morphisms and exact sequences.

Since we will deal with relations between categories, we will need to dis-
tinguish between distinct categories in this part. Thus, if necessary, given a
category C, we will denote its objects by Obj(C), its morphisms by Mor(C),
and its composition by oe. Further, given two objects X and Y of C, we may
denote the class of morphisms between them by Home(X,Y).

2.1. FUNCTORS

A functor is a structure-preserving relation between categories. It provides a
way to relate objects and morphisms of one category to objects and morphisms
of another category, while respecting composition and identities. We begin this
section with the abstract definition of functors and then follow it up with a
few examples.

Definition 2.1.1. Given two categories, € and D, a functor is a relation F
that assigns an object of D to each object of € and a morphism of D to each
morphism of € in such a way that:

(i) F(idx) = idpx) for all X € Obj(C),

(ii) F(foeg) = F(f)op F(g) for all f,g € Mor(€) such that foeg € Mor(C).
46
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Notice that, in the definition above, we denote by the same symbol (F') the
relation between objects and morphisms. If one were to differentiate them by
denoting the relation on objects by FOP) and the relation on morphisms by
FMer then the first condition above would read

FMor(ldX) - idFObj(X) .

Also notice that, implicit in the second condition above, is the condition that,
if f € Home(X,Y), then FMor(f) € Homqp (FOP(X), FOPI(Y)).

Thus, functors can be thought of as “homomorphisms of categories”, much
like group homomorphisms preserve group structure. To better understand
their definition, we present some examples below.

Example 2.1.2. For any category C, the identity functor Ide : € — C is
defined to be given by:

e Ide(X) = X for every object X of C,
e Ide(f) = f for every morphism f of C.

Since this functor identifies every object and morphism with itself, it trivially
satisfies the conditions (i) and (ii) in Definition 2.1.1.

The identity functor given in the example above is the simplest example of
a functor. In the next example, we will construct a functor that is not the
identity one.

Example 2.1.3. Consider a category € with two objects, Obj(€C) = {A, B},
and three morphisms, Mor(C) = {idy4, f,idg}, where f € Home(A, B). In this
case, a functor F': € — € must assign:

F(A) e {A,B} and F(B)e€ {A, B},
F(ids) = idpay, F(f) € Home(F(A), F(B)) and F(idg) = idps) -

For instance, one possible functor that is not the identity one is obtained by
choosing:

F(A)=F(B)=A and F(ida) = F(f) = F(idp) = ida .
On the other hand, notice that there is no functor that assigns
F(A)=B and F(B)=A,

since there is no morphism in Home(B, A) to serve as F'(f).
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A particularly important class of functors are the so-called Hom-functors,
which capture the morphism sets in a category.

Example 2.1.4. Let € be a locally small category. For a fixed object A € C,
the Hom functor

Homg(A, —) : € — Sets
is defined by assigning:

e To every object X of C, the set Home(A, —)(X) defined by Home(A, X),

e For every two objects X and Y of € and every morphism f € Home(X,Y),
the function Home(A, —)(f) : Home(A, X) — Home(A,Y) that maps a
morphism g € Homg(A, X) to the morphism (f o g) € Home(A,Y).

The fact that these assignments define a functor follows from the properties of
the identity morphisms and the associativity of the composition of morphisms.

Notice that in the example above, we fixed the object A in the first compo-
nent of Hom. A natural question is whether it is also possible to fix an object
in the second component of Hom. As we show in the next example, the answer
is ‘yes’, but with a little difference.

Example 2.1.5. Let C be a locally small category. Its opposite category C°P
is the one whose objects are the same as those of € and whose morphisms are
reversed, that is, Homeor (X, Y) = Home(Y, X)) for every two objects X and Y
of €.

For a fixed object A € €, the contravariant Hom functor
Home(—, A) : C°P — Sets
is defined by assigning:

e To every object X of C°P, the set Home (X, A),

e To every morphism f € Homeor(X,Y') between objects X and Y of C°P,
the function Home(f, A) : Home(X, A) — Home(Y, A) that maps a mor-
phism h € Home(X, A) to the morphism (h o f) € Home(Y, A).

The fact that these assignments define a functor also follows from the prop-
erties of the identity morphisms and the associativity of the composition of
morphisms.
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Now that we have seen examples of functors, we close this section with a re-
sult that states two fundamental properties of functors: they can be composed
and this composition is associative.

Proposition 2.1.6. Let A, B, C, D be categories, let F: A — B, G: B — C
and H : € — D be functors.

(a) The assignment (G o F') : A — €, defined by
e (GoF)(X)=G(F(X)) for every object X of A,

e (GoF)(f)=G(F(f)) for every morphism f of A,
is also a functor.

(b) The functors H o (G o F') and (H o G) o F' are equal.

Proof. (a) To prove that the assignment (G'o F') is a functor, we need to verify
that it satisfies conditions (i) and (ii) from Definition 2.1.1. In fact:
(i) For every object X € Obj(A), we have:

(Go F)(idyx) = G(F(idx))
= G(idpx))
= ide(rx))

= id(Gor)(x) -

(ii) For every three objects X, Y, Z of A, and for every two morphisms
f € Homy(X,Y) and g € Homy (Y, Z), we have:

Q

(GoF)(gof)=G(F(geof))

(F'(g) o F(f))
(F(9)) e G(F(f))
F)(g) o (G o F)(f).

Q @
o

G

—~

o

This shows that G o I is indeed a functor from A to C.

(b) To show that the functors Ho (G o F) and (H o G)o F are equal, we must
verify that their assignments of objects and morphisms are the same. In
fact:
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e For every object X of A:

This shows that Ho (Go F) =(HoG)o F. O

2.2. FAITHFUL, FULL AND FULLY FAITHFUL FUNCTORS

In the remaining sections of these notes, we will define several particularly
important types of functors. In this section, we will introduce faithful, full
and fully faithful functors. We will also provide several examples to illustrate
these concepts.

Definition 2.2.1. Given two locally small categories, C and D, a functor
F:¢—-D
is said to be:
e faithful when F : Home(cy, o) — Homp(F(cy), F(c2)) is injective for all
pair of objects ¢, ¢ of C;

e full when F' : Home(cq, c2) — Homp (F(¢1), F/(c2)) is surjective for all pair
of objects ¢y, ¢y of C;

o fully faithful when F : Home(cy, o) — Homp(F(cy), F'(c2)) is bijective
for all pair of objects ¢y, co of €.

We will illustrate the definitions above with a few examples. We will begin
by showing that the identity functor is fully faithful.
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Ficure 2.2.1. Category constructed in Example 2.2.3

Example 2.2.2. Let € be a locally small category. Recall that the identity
functor Ide : € — C is given by

F(c) =c¢ forall c € Obj(C) and F(f)=f forall f € Mor(C).

This functor is fully faithful. In fact, for every pair of objects ¢,d of C, we
have that F': Home(c, d) — Home(F'(c), F((d)) is the identity function. Since
identity functions are bijections, we conclude that F' is a fully faithful functor.

Now, we will consider a locally small category and construct a two functors
between them, including an example of a fully faithful functor that is not the
identity one.

Example 2.2.3. Let € be the category with two objects, Obj(C) = {e, x},
six morphisms, Mor(C) = Home(e, ®) U Home(e, x) U Home(x, ) U Home(*, %),
where
Home(e, ) = {ids, h}, Home(e,x) = {f},
Home(*,0) = {g}, Home(x,*) = {id,, k},
and the compositions of these morphisms are given by
idg 0idg = ide, ideoh=h, hog=g,
hoide =h, hoh=id,, idesog =g,
foide=f, foh=f [fog=kFk,
gof=h, geoid.=g, gok=y,
idyof = f, id,oid, =id,, idyok =k,
kof=f koidy=k, kok=id,.
A diagrammatic representation of this category is shown in Figure 2.2.1.

Now we will proceed to construct two functors from this category to itself.
We begin by constructing a functor that is neither faithful nor full. Consider
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any functor F': € — € such that

In order to be a functor, notice that F'(Mor(C)) C Home(e,®) = {ids, h}. In
particular, if we choose ¢; = @ and ¢y = *, we see that the function

F : Home(e,*) — Home(F' (o), F'(%))

cannot be surjective. This means that no such functor can be full. In order to
guarantee that F' is also not a faithful functor, let

Since id, is an identity morphism, this assignment defines a functor. And,
since there exists no morphism ¢ € Mor(C) such that F'(¢) = h, we see that,
when we choose ¢; = ¢; = o, the function F' : Home(e,e) — Home(F' (o), F'(e))
is not injective. This shows that F is also not faithful.

Next, we will construct a fully faithful functor G : € — C that is different
from the identity. Define G by assigning:

e G(o) =% and G(*) = e,
e G(id,) =id,, G(h) =k, G(f) =g, G(g9) = f, G(id,) = ids, and G(k) = h.

To verify that G is a functor, begin by noticing that

G(id,) = id* = idg(.) and G(ld*) = id. = idg(*) .
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Then, notice that:

G(ids 0idy) = G(ids) = id, = id, oid, = G(ids) 0 G(ids),
G(ide oh) = G(h) = k = id, ok = G(id.) o G(h),
G(hog)=Glg)=f=kof=G(h)oGl(g),
G(hoids) = G(h) = k = k oid, = G(h) o G(id,),
G(hoh) =G(id.) = id, = ko k = G(h) o G(h),
G(ide og) = G(g) = f = id, of = G(ids) 0 G(g),
G(foide) =G(f) =g =goid, = G(f) o G(ids),
G(foh)=G(f)=g=gok=G(f)oG(h),
G(fog)=G(k) go f=G(f)oG(g),
G(go [)=G(h) fog=G(g)oG(f),
G(goid,) =G(g) = f = foide = G(g) o G(id,),
G(gok)=Glg) = f=foh=G(g)oG(k),
G(id.of) = G(f) = g = ide og = G(id,) o G(f),
G(id, oid,) = G(id,) = ids = id, 0ids = G(id,) o G(id,),
G(id, ok) = G(k) = h = ids oh = G(id,) o G(k),
Gkof)=G(f)=g=hog=G(k)oG(f),
G(koid,) = G(k) = h = hoid, = G(k) o G(id,),
G(kok)=G(id,) =ide = hoh = G(k) o G(k).

g
h
k

This implies that G is indeed a functor. Finally, to verify that G is fully
faithful, notice that
G : Home(e,®) — Home(x, %), G : Home(e, x) — Home(x, o),
G : Home(x, ) — Home(e, %) and G : Home(*,*x) — Home(e, o)

are all bijections. This shows that G is a fully faithful functor, different from
the identity.

In the examples above, we only considered functors from a category to itself.
We close this section with an example where we consider a functor between
different categories.

Example 2.2.4. Let k be a field and denote by € the category of vector
spaces over k; that is, the category whose objects are vector spaces over k,
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whose morphisms are linear transformations between these vector spaces, and
whose composition is given by the usual composition of linear transformations
(see Example 1.5.8). Then, let D be the category of sets (see Example 1.1.3).
Next, define a functor F': € — D in the following way:

e to each vector space (V,+,-), assign its underlying set, F'(V,+,-) = V;

e to each linear transformation 7' : V — W between vector spaces, assign
its underlying function (which is also denoted by T').

This is a faithful functor which is not full.

In fact, to verify that F is a functor, notice that F(id(y ) = idy for every
k-vector space (V,+,-). Also notice that F'(T'oS) = F(T) o F(S) because the
composition of linear transformations is defined to be the composition of their
underlying functions. This justifies the claim that F' is a functor.

Now, to verify that the functor F' is faithful, notice that, for every pair of
linear transformations 7,5 : V. — W, we have: F(T) = F(S) if and only
if T =S, because the equality of linear transformations is by definition by
the equality of their underlying functions. Finally, to verify that F' is not
full, recall that not every function between sets is a linear transformation.
For instance, any function f : V' — W such that f(o) # o is not a linear
transformation V' — W. Since k is assumed to be a field, one can construct
one such function whenever W is different from the 0-dimensional k-vector
space {o}. This justifies the claim that the functor F' is not full.

2.3. CONSTRUCTIONS IN CATEGORIES IV

2.3.1. Limits. Limits provide a unified framework for constructing universal
objects in category theory, generalizing other concepts introduced earlier, such
as products and equalizers. The concept of a limit captures the idea of an
object that approximates a diagram of objects and morphisms in an optimal
way by satisfying a universal property. In this subsection, we define limits
abstractly and illustrate this concept through a progression of examples.

Definition 2.3.1 (limits). Given two categories, € and J, a diagram in C of
shape J is defined to be a functor D : J — €. A cone over a diagram D of shape
J is defined to be an object ¢ € Obj(C) together with a family of morphisms
{¢; € Home(c, D(i)) | ¢ € Obj(J)} such that D(f)ovy; = 1, for every morphism
f € Homy(i,7). A limit of a diagram D is a cone (¢, {1); € Home(c, D(7))};)
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such that, for every cone (¢, {¢} € Home(c¢', D(i))};) over D, there exists a
unique morphism u € Home(c, ¢) such that ¢) = v; o u for all © € Obj(J). In
this case, the limit is denoted by @ D or lim D.

This abstract definition may seem daunting at first, but it encapsulates a
simple idea: the limit is an object equipped with morphisms to each object in
the diagram, and these morphisms are compatible with the structure of the
diagram in a universal way. Any other object with compatible morphisms must
factor uniquely through the limit. To build intuition, we begin by constructing
the limit of a diagram in the category of sets.

Example 2.3.2. Let Sets be the category of sets (see Example 1.1.3) and J
be a small category. A diagram in Sets of shape J is a functor D : J — Sets.
That is, for every object j € Obj(J), we assign a set D;, and to every morphism
f € Homy(4, j), we assign a function Dy : D; — D;.

Given a diagram D of shape J in Sets, a cone over D consists of a set C
and a family of functions {¢; : C' — D, | ¢ € Obj(J)}, such that Dy o 1); = 1),
for every morphism f € Homy(z, j). Given one such diagram, to construct its
limit, first consider the product HieObj(j) D;. Then, define C to be the subset
consisting of the tuples (d;); € [;copnjm) Di» such that Dy(d;) = d; for every
morphism f € Homy(7, j). In other words, C' consists of all tuples that respect
the transition maps of the diagram. Next, define a function 7; : C' — D; by
setting m;((d;);) = d; (the i-th coordinate of the tuple) for every ¢ € Obj(J).
Notice that Dy o m; = m; automatically from the construction of C.

Now, to show that the cone (C,{m;};) is the limit of the diagram D, notice
that, for every cone (C',{¢)j : C" — D;};) over D, we can define a function
u: C" = C by setting u(cd) = (¥i(c)); for every element ¢ € C’. The fact
that u is well-defined follows from the fact that the functions 1 satisfy the
condition Dy o ¢y; = 4} by construction. The fact that ¢; = m; o u for all
i € Obj(J) follows from the definitions of u and m;:

i (u(c)) = m (Wi()):) = ¢i(d) forall ¢ € C".
Finally, the uniqueness of u follows from the equation above: the i-th coordi-

nate of u(c’) must be m;(u(c)) = i), for every i € Obj(J).

This shows that the pair (C,{m};) is the limit of the diagram D in the
category of Sets. This provides a very concrete construction for this limit.
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This explicit construction in the category of sets illustrates the general prin-
ciple: limits can be built from products by imposing compatibility conditions.
We now examine how limits specialize to other familiar constructions. First,
we identify terminal objects with limits. This will provide us with a further
array of concrete examples of limits.

Example 2.3.3. Let C be a category and let J be the empty category (with
no objects and no morphisms). A diagram D : J — € is necessarily the empty
functor. A cone over this empty diagram consists simply of an object ¢ € €
(with no morphisms to specify, since there are no objects in the diagram).
Hence, the limit of the empty diagram is a terminal object in € (see Defini-
tion 1.2.4).

Having seen the degenerate case of the empty diagram and terminal objects,
we now consider the situation in which the limit of a diagram corresponds to
the product.

Example 2.3.4. Let C be a category and let J be the category with two
objects, Obj(J) = {1, 2}, and two morphisms, Mor(J) = {id,id>}. In this case,
a diagram D : J — € consists simply of two objects, D(1) = ¢; and D(2) = ¢,
since D(id;) = id., and D(idy) = id., automatically. Hence, a cone over this
diagram consists of an object ¢ together with morphisms 11 € Home(c, ¢1) and
19 € Home(c, ¢o). Thus, if the product of ¢; and ¢y exists in €, it is the limit
of this diagram. In fact, from the definition of product (Definition 1.2.9), we
have that, for every object ¢ and every pair of morphisms ¢; € Home(c, ¢)
and ¥, € Homg(c, cg), there exists a unique morphism v € Home(c, ¢; X ¢3)
such that ¢¥; = m; o u and 1y = my o u. This is precisely the property satisfied
by the limit of the diagram D.

Having identified limits with products, we now show how limits generalize
another important construction: equalizers.

Example 2.3.5. Let C be a category and let J be the category with two
objects, Obj(J) = {1,2}, and four morphisms, Mor(J) = {idy, ids, f, g}, where
f and ¢ are morphisms in Homg(1,2). A diagram D : J — € consists of
two objects, ¢; = D(1) and ¢ = D(2), and two morphisms, D(f), D(g) €
Home(cy, ¢o). Hence, a cone over this diagram consists of an object ¢ of € and
two morphisms, ¢, € Home(c, ¢1) and 1o € Home(c, ¢3), such that D(f)o; =
19 = D(g) o ¢;. In particular, notice that: D(f) o = D(g) oty and 19 is
uniquely determined by /.



NOTES ON CATEGORY THEORY 57

Thus, if the equalizer of D(f) and D(g) exists in C, the limit of this diagram
is this equalizer. In fact, recall from Definition 1.5.1 that the equalizer of D(f)
and D(g) consists of an object e and two morphisms, 1 € Home(e, ;) and
D(f) o € Homg(e, ¢a), such that: D(f) o = D(g) o and, for every object
¢’ and every morphism 1 € Home(€', ¢1) satisfying D(f) o ¢’ = D(g) o ¢/,
there exists a unique morphism u € Home(€’, e) such that ¢ = 1) o u. This is
precisely the universal property satisfied by the limit of the diagram D in C.

These examples show that limits generalize constructions in categories that
we had previously introduced and provide an array of examples of limits, as
well as, examples in which limits do not exist. To close this section, we will
consider a more structured type of limit that arises frequently and from inverse
systems indexed by partially ordered sets.

Example 2.3.6. Let C be a category and I be a poset, that is, I is a set
endowed with a partial order <. An inverse system in C is a family of objects
{ci | i € I} and a family of morphisms {f;; € Home(c;,¢;) | j < i € I} such
that:

® f”:ldcl for aHZEI,
.fjkOfij:fikaI'aHk?SjSiel.

We can realize direct systems in € as functors from a category J to C, that
is, as diagrams of shape J in C. In fact, let J be the small category with object
set I and morphisms determined by the partial order <: Homy(i,7) has one
morphism (which we will denote simply by ¢ — j) if and only if 7 < ¢ in [I.
Hence, a diagram D : J — C is the assignment of: an object D(i) to each
object ¢ € Obj(J), and a morphism D(i — j) € Home(D(7), D(j)) to each
morphism ¢ — j. Furthermore, these morphisms must satisfy the following
conditions (see Definition 2.1.1):

e D(id;) = idpg for all i € 1,
e D(j—k)oD(i—j)=D(i —k)forall k <j<iel

In this particular case, the limit of the directed system is defined to be
the limit of the corresponding diagram. More specifically, this limit is a pair
(¢, {t; € Home(c,¢;) | i € 1}) such that: f;; o4, = ¢; for all j < i and, if
(¢, {¥; € Home(c',¢;) | i € I}) is such that fi; o ¢; = ¢} for all j < i, then
there exists a unique morphism u € Home(c/, ¢) such that 1. = 1; o u for all
1€ 1.



58 TIAGO MACEDO

2.3.2. Colimits. Colimits also provide a unified framework for constructing
universal objects in category theory and generalize other concepts such as
coproducts and coequalizers. In this subsection, we define colimits abstractly
and illustrate this concept through a progression of examples.

Definition 2.3.7 (colimits). Given two categories, € and J, a diagram in C
of shape J is defined to be a functor D : J — €. Given one such diagram D,
a cocone over D is defined to be an object ¢ of C together with a family of
morphisms {¢; € Home(D(i),c) | i € Obj(J)}, such that ¢; o D(f) = ¢
for every morphism f € Homy(i,j). The colimit of a diagram D is de-
fined to be a cocone (¢, {¢; € Home(D(i),c)};) such that, for every cocone
(¢, {¢, € Home(D(i), ') }i), there exists a unique morphism u € Home(c, )
such that ¢) = wo ¢; for all i € Obj(J). In this case, the colimit is denoted by
@D or colim D.

This abstract definition may seem daunting at first, but it encapsulates a
simple idea: the colimit is an object equipped with morphisms from each object
in the diagram, and these morphisms are compatible with the structure of the
diagram in a universal way. Any other object with compatible morphisms must
factor uniquely from the colimit. To build intuition, we begin by constructing
the colimit of a diagram in the category of sets.

Example 2.3.8. Let Sets be the category of sets (see Definition 1.1.3) and let
J be a small category. A diagram in Sets of shape J is a functor D : J — Sets,
that is, a set D; is assigned to each object ¢ of J, and a function Dy : D; — D);
is assigned to each morphism f € Homy(i, 7).

Given a diagram D in Sets, a cocone over D consists of a set C' and a
family of functions {¢; : D; — C | i € Obj(J)}, such that ¢; o Dy = ¢; for
every morphism f € Homjy(4, 7). To construct the colimit of one such diagram,
first consider the disjoint union |_|Z.60bj(j) D;. Then, define ~ as the smallest
equivalence relation on this disjoint union such that d; ~ d; when there exists
a morphism f € Home(7,j) such that D(d;) = d;. Next, define C' to be the

quotient set <|_|i60bj(j) DZ-> /~ and denote the equivalence class in C' of an
element ¢ in D; by [¢]. Finally, for each ¢ € Obj(J), define ¢; : D; — C to be
the function given by ¢;(d;) = [d;]. Notice that ¢; 0 Dy = ¢; automatically from
the construction of the equivalence relation.

To show that the cocone (C,{t;};) is the colimit of the diagram D, begin by
noticing that, for every cocone (C', {¢; : D; — C'};), we can define a function
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u: C — C" by setting u([d;]) = ¢;(d;). To see that u is well-defined, note that
if d; ~ dj, then the cocone conditions ¢;0 Dy = ¢ ensure that ¢;(d;) = ¢(d;),
so the value of u does not depend on the choice of representative. Then, notice
that ¢} = wo; for all ¢ € Obj(J) by the definitions of u and ¢;:

uw(ei(d;)) = u([d]) = ¢i(d;)  for all d; € D; and all i« € Obj(J).

)

Finally, notice that u is completely determined by the equation above.

This shows that the pair (C,{t};) is the colimit of the diagram D in the
category Sets. This provides a very concrete construction for colimits.

This explicit construction in the category of sets illustrates the general prin-
ciple: colimits can be built from coproducts. We now examine how colimits
specialize to other familiar constructions. First, we identify initial objects with
colimits. This will provide us with a further array of examples of colimits.

Example 2.3.9. Let C be a category and let J be the empty category (with
no objects and no morphisms). A diagram D : J — € is necessarily the empty
functor. A cocone over this empty diagram consists simply of an object ¢ € €
(with no morphisms to specify, since there are no objects in the diagram).
Hence, the colimit of the empty diagram is an initial object in C: an object ¢
such that for every object ¢ € @, there exists a unique morphism ¢ — ¢'.

Having seen the degenerate case of the empty diagram and initial objects,
we now consider the situation in which the colimit of a diagram corresponds
to the coproduct.

Example 2.3.10. Let C be a category and let J be the discrete category with
two objects, Obj(J) = {1,2}, and two morphisms, Mor(J) = {idy,ids}. A
diagram D : J — € consists simply of two objects, D(1) = ¢; and D(2) = ¢,
since D(id;) = id., and D(idy) = id.,. Hence, a cocone over this diagram
consists of an object ¢ together with morphisms ¢; € Home(cq,¢) and ¢y €
Home(cg, ¢). Thus, if the coproduct of ¢; and ¢, exists in €, then it is the colimit
of this diagram. In fact, from the definition of coproducts (Definition 1.2.15),
we have that, for every object ¢ and every pair of morphisms ¢; € Home(cy, ¢)
and ¢ € Home(co, ¢), there exists a unique morphism u € Home(c; U g, ¢)
such that ¢; = u oy and ¢y = w0 1s.

Having identified colimits with coproducts, we now show how colimits gen-
eralize another important construction: coequalizers.
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Example 2.3.11. Let C be a category and let J be the category with two
objects, Obj(J) = {1,2}, and four morphisms, Mor(J) = {idy, ids, f, g}, where
f and ¢ are morphisms in Homg(1,2). A diagram D : J — € consists of
two objects, ¢; = D(1) and ¢ = D(2), and two morphisms, D(f), D(g) €
Home(cq, ¢2). A cocone over this diagram consists of an object ¢ of € and two
morphisms, ¢; € Home(cy, ) and ¢o € Home(co, ¢), such that ¢y 0 D(f) =
¢1 = ¢9 0 D(g). Notice that, we have that: ¢ 0 D(f) = ¢2 0 D(g) and ¢, is
uniquely determined by ¢s.

Thus, if the coequalizer of the morphisms D(f) and D(g) exists in C, then
it is the colimit of this diagram. In fact, recall from Definition 1.5.9 that the
coequalizer of D(f) and D(g) consists of an object ¢ of € and a morphism
m € Home(co, ¢), such that: mo D(f) = mo D(g) and, for every other object ¢
and every morphism 7' € Home(co, ¢) satisfying ©’ o D(f) = 7’ o D(g), there
exists a unique morphism u € Home(c, ') such that 7' = wom. This is exactly
the universal property satisfied by the colimit of the diagram D.

These examples show that colimits recover other constructions in categories
and provide an array of examples of colimits. To close this section, we will
consider a more structured type of colimit that arises frequently and from
direct systems indexed by partially ordered sets.

Example 2.3.12. Let € be a category and I be a poset, that is, let I is a set
endowed with a partial order <. A direct system in € is a family of objects
{ci | i € I} and a family of morphisms {f;; € Home(c;,¢;) | @ < j € I} such
that:

[ ] f“ = ldcl fOl" all 2 € [,

We can realize direct systems in C as functors from a category J to C.
More precisely, let J be the small category with object set I and morphisms
determined by the partial order <: Homys(, j) has one morphism (which we
will denote simply by ¢ — j) if and only if ¢ < j in /. Hence, a functor
D :J — € is the assignment of an object D(i) € Obj(€) to each object i € I,
and a morphism D(i — j) : D(i) — D(j) in € to each morphism ¢ — j in J.
Furthermore, these morphisms must satisfy the following conditions:

® D(ldz) = 1dD(z) for all 7 € I,

e Dii—k)=D(j—>k)oD(i—j)foralli<j<kel.
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In this particular case, the colimit of the direct system is defined to be the
colimit of the corresponding diagram. More specifically, this colimit is a pair
(¢, {¢ € Home(c;, ¢)};) such that: ¢; o fi; = ¢; for all ¢ < j in I and, if
(¢, {¢; € Home(c;, ¢')}4) is another cocone such that ¢’ o fi; = ¢ for all i < j
in 7, then there exists a unique morphism v € Home(c, ¢') such that ¢} = uo¢;
forall i € I.

2.3.3. Images of Morphisms. In this section, we define the image of a mor-
phism in an abstract category, provide some examples, and show how the
abstract definition captures the essential range of a morphism. In familiar
categories, we will see that this definition agrees with the usual notion of
image.

Definition 2.3.13 (image of morphism). Given a category C, the image of
a morphism f € Home(a,b) is a triple (im(f), m,e) satisfying the following
property:

e im(f) is an object of C,

m € Home(im(f),b) is a monomorphism,

e € Home(a,im(f)) is such that f =moe,

e if z is an object of C and ¢ € Home(a,z) and m’ € Home(x,b) are
morphisms such that m’ is a monomorphism and f = m/ o€/, then there
exists a unique morphism w : im(f) — z such that m = m’ o .

As is usual with definitions given in terms of universal properties, when an
image of a morphism exists, it is unique up to isomorphism. This abstract def-
inition encodes the intuition that the image should be the smallest subobject
through which f factors: since m is a monomorphism, im(f) can be viewed as
a subobject of b, and the universal property ensures that any other monomor-
phic factorization of f factors through im(f). However, not all categories have
images for all morphisms. We will illustrate both situations through examples.
To begin, we show that the image of a morphism in the category of sets is the
usual image of a function.

Example 2.3.14. Let Sets be the category of sets (see Example 1.1.3). For
any function between sets, f : A — B, its image (in the categorical sense)
coincides with the usual set-theoretic image,

im(f) = {b € B | there exists a € A such that b = f(a)}.
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To justify this claim, notice that:

e im(f) is a set.

e The inclusion map, m : im(f) — B given by m(b) = b for all b € im(f),
is a monomorphism in Sets (see Example 1.7.2).

e The restriction of f, that is, the map e : A — im(f) given by e(a) = f(a)
for all @ € A, is a function such that f =moe.

e Suppose X is aset and ¢ : A — X and m’ : X — B are functions such
that m’ is injective (that is, monic, see Example 1.7.2) and f = m/ o€’
This means that f(a) = m’(€'(a)) for all @ € A. Hence, we can define a
function u : im(f) — X as follows: for each b € im(f), choose any a € A
such that f(a) = b, and set u(b) = €’(a). To see that u is well-defined,
suppose f(a;) = f(az) = b for some ay,a; € A. Then

m'(¢'(a1)) = f(a1) = f(az) = m'(¢'(az)).
Since m/ is injective, we have €'(a;) = €/(az), so the choice of a does not
matter, or equivalently, u is well-defined. By definition, we have

m'(u(f(a))) = m'(¢'(a)) = f(a) = m(f(a)),
that is, m’ o u = m. The uniqueness of u follows from the fact that m’ is

a monomorphism. In fact, for every function «’ : im(f) — X such that
m' ou’ = m, we have m’ ou' = m' o u, and as a consequence, u’ = u.

Next, we show a case where the image can be computed explicitly.

Example 2.3.15. Let € be a category and a be an object of €. The image of
id, is isomorphic to a.

To see this, notice that a is an object of €, that id, is a monomorphism in
Home(a, a), and that id, is a morphism in Home(a, a) such that id, = id, oid,.
Furthermore, if x is an object of € and if ¢’ € Home(a, x) and m’ € Home(z, a)
are morphisms such that m’ is a monomorphism and id, = m’ o €/, then we
must show there exists a unique morphism « : @ — z such that id, = m’ o u.
Taking u = €/, we have m’ ou = m/ o ¢/ = id,, as required. The uniqueness
of u follows from the fact that m’ is a monomorphism. In fact, if v is any
morphism in Home(a, ) such that id, = m/ o v, then m’ ov =m/ o€/, and as
a consequence, v = €. Thus u = €’ is the unique such morphism.

The key observation in the example above is that, since the morphism itself
is already a monomorphism, the image factorization does not need to factor
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out any additional structure. Thus, for monomorphisms, the image is essen-
tially the domain itself. This general result will be a consequence of the next
proposition.

Proposition 2.3.16. Let C be a category, f € Home(a, b) and g € Home(b, ¢)
be morphisms of C. If the image of go f exists in € and ¢ is a monomorphism,
then the image of f also exists in C and is isomorphic to the image of g o f.

Proof. Let im(g o f) be the image of g o f, let e € Home(a,im(g o f)) be a
morphism, and let m € Home(im(g o f),¢) be a monomorphism such that
(go f) =moe. We will show that im(g o f) also serves as the image of f.

By the universal property of im(go f) applied to the factorization go f = go f
(where we view this as a factorization through b with ¢/ = f and m’' = g),
there exists a unique morphism u € Home(im(g o f),b) such that g o u = m.
Moreover, since m is a monomorphism, u must also be a monomorphism.
Furthermore, we have

gof=moe=(gou)oe=go(uoe),
and since g is a monomorphism, this implies that f = v oe. In summary:
e im(g o f) is an object of C,
e u € Home(im(g o f),b) is a monomorphism,

e ¢ € Home(a,im(g o f)) be a morphism such that f =uoe.

To complete the proof that im(g o f) is isomorphic to im(f), let  be an
object of € and €’ € Home(a, ) and m' € Home(z, b) be morphisms such that
m’ is a monomorphism and f = m/oe’. We need to show there exists a unique
morphism v : im(g o f) — x such that « = m’ o v.

To do that, we will use the universal property of im(go f). First notice that x
is an object of C, that e € Home(a, z) is a morphism and (gom') € Home(z, ¢)
is a monomorphism, such that

/

gof=go(moe)=(gom)oc.
Hence, the universal property of im(g o f) implies that there exists a unique
morphism v € Home(im(g o f), x) such that m = (gom/) ov. Since gou = m,
it follows from this equality that

gou:(gom/)ov:go(m,ov).

The fact that g is a monomorphism implies that « = m/owv, as we wanted. [
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In the next example, we address the opposite situation: we compute the
image of the zero morphism in an abelian category.

Example 2.3.17. Let A be an abelian category and let a,b be objects of A.
The image of the zero morphism 0 € Homy(a,b) is 0. To justify this claim,
notice that:

0 is an object of A,;
e idy : 0 — b is a monomorphism (the unique morphism from 0 to b);

e 0:a — 0is a morphism of A such that 0 = idpo0 (where the left side
is the zero morphism a — b and the composition on the right equals the
zero morphism);

e if x is an object of A and if ¢’ € Homy(a,x) and m’ € Homy(x,b) are
morphisms such that m’ is a monomorphism and 0 = m’ o ¢/, then the
unique morphism u : 0 — z (which exists since 0 is the zero object)
satisfies idg = m’ o .

These examples show cases where images exist. However, in general cate-
gories, images may fail to exist. In the next example, we will present a case
where the image does not exist.

Example 2.3.18. Consider a small category € with two objects, Obj(C) =
{a, b}, morphisms given by
Home(a,a) = Z, = {0,1}, Home(a,b) = {f},

Home(b,0) =N =1{0,1,2,...}, Home(b,a) =10,

and composition given by
000=101=0, 0ol=100=1, folO=fol=f,

nom=n+m and nof=f foralln,meN.

In this case, the image of f does not exist.

To justify this claim, first notice that f is not a monomorphism, since 0 # 1
and fo0 = fo1l. Hence, the only object of € for which there could exist
a monomorphism into b is b itself. In fact, for all m € Home(b,b), we have
momn, = mony if and only if m+n; = m+ny in N. Since m+n; = m+ns in
N if and only if n; = ny, we see that every morphism in Home(b, b) is in fact
a monomorphism. Moreover, m o f = f for all m € Home(b,b), so f factors
through b via any m € N. However, since N has no maximal element and
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for any m € N there exist n,n’ € N with n > m such that we cannot write
m = n+n/, there is no monomorphism b — b through which all factorizations
pass. This means that the universal property cannot be satisfied, so the image
of f does not exist in C.

Having explored examples and non-examples, we close this section with
the case of abelian categories, where images always exist and can be described
using kernels and cokernels. The following proposition provides two equivalent
characterizations of the image in this setting.

Proposition 2.3.19. Let A be an abelian category and let f € Homy(a,b)
be a morphism of A. The image of f is (isomorphic to) the cokernel of the
kernel of f.

Proof. To show that coker(ker(f)) is isomorphic to im(f), let k : ker(f) — a be
the kernel of f and e : a — coker(k) be the cokernel of k. From the definition
of kernel (Definition 1.5.6), fok = 0. Then, from the universal property of the
cokernel (Definition 1.5.14), there exists a unique morphism m : coker(k) — b
such that f = m o e. Now, notice that:

e coker(k) is an object of A.
e m € Homy(coker(k),b) is a monomorphism.
e ¢ € Homy(a, coker(k)) is a morphism that satisfies f = moe.

e If xis an object of A, ¢’ € Homy(a, ) is a morphism, and m’ € Homy(z, b)
is a monomorphism such that f = m’o¢e’, then we can construct a (unique)
morphism u : coker(k) — x such that m = m’ ou. In fact, from the
definition of kernel (Definition 1.5.6), we have that

O0=fok=(m'oe)ok=m'o(eok).

Since m’ is a monomorphism (by hypothesis), this implies that ¢’ o k = 0.
Now, from the definition of cokernel (Definition 1.5.14), there exists a
unique morphism u € Homy (coker(k), ) such that ¢ = uoe. Thus,

moe:f:m/oe/:mlo<u06):<m/O'U,)O€.

Since e is an epimorphism (see Example 1.7.9), this equation implies that
m =m’ou.

To finish the proof that coker(k) is isomorphic to im(f), we will use
the fact that m’ is a monomorphism to show that this morphism u is the
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unique morphism in Homy (coker(k), z) such that m = m’ o u. In fact, if
uw' € Homy(coker(k), z) is a morphism such that m’ o v’ = m, we obtain
that m’ ou’ = m = m’ ou, and as a consequence, that v’ = u.

This shows that the cokernel of the kernel of f is isomorphic to its image. [

To close this section, we make a remark that follows from the proof of the
previous result and will be used in the subsequent sections.

Remark 2.3.20. Let A be an abelian category and f € Homy(a,b) be a mor-
phism in A. It follows from the proof of Proposition 2.3.19 that the morphism
e in the factorization f = m o e given in Definition 2.3.13 is an epimorphism.
Moreover, the decomposition f = m o e is unique up to composition with
isomorphisms.

2.3.4. Exact Sequences. Exact sequences capture the idea that the output
of one morphism is precisely the input that the next morphism kills. In this
section, we define exact sequences in abstract abelian categories and explore
their basic properties through examples.

Definition 2.3.21 (exact sequence). Given an abelian category A, a sequence
a Ly b ¢ of two morphisms and three objects of A is said to be exact at
b when im(f) = ker(g). Similarly, a sequence 0 Saliv el 0 of four
morphisms and five objects of A is said to be a short exact sequence when it
is exact at a, b and c.

Notice that the exactness of the sequence 0 — a — b at a is an abstraction
of injectiveness and the exactness of the sequence b — ¢ — 0 at ¢ is abstraction
of surjectiveness (see Proposition 2.3.27 for the formal statements). To make
these concepts more concrete, we examine several examples.

Example 2.3.22. Consider the abelian category of abelian groups (see Ex-
ample 1.8.3). Let Z denote the abelian group of integers under addition (see
Example A.2), and let Z/2Z denote the quotient group of integers modulo 2
(see Example A.21). Consider the sequence of abelian groups

0—>Z—Z—ZJ2Z — 0,

where the first non-zero morphism is multiplication by 2 (sending n + 2n)
and the second is the quotient map (sending n — 7, the residue class of n
modulo 2). We verify that this is a short exact sequence by checking exactness
at each object:
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e The image of the zero morphism 0 — Z is {0}. The kernel of multiplica-
tion by 2is {n € Z | 2n = 0} = {0}. Since {0} = {0}, the sequence is
exact at the first Z.

e The image of multiplication by 2 is {2n | n € Z} = 27Z, the set of even
integers. The kernel of the quotient map is {n € Z | m = 0} = 2Z, the
set of all integers that are multiples of 2. Since 27Z = 2Z, the sequence is
exact at the second Z.

e The image of the quotient map is Z/2Z, since it is surjective. The kernel
of the zero morphism Z/27Z — 0 is all of Z/27Z. Since Z/27 = 7./27Z, the
sequence is also exact at Z/27Z.

The concrete example above illustrates the key features of short exact se-
quences in a familiar setting. However, the definition applies equally well to
abstract abelian categories, and we can construct exact sequences from any
object using only categorical operations. The next example shows the simplest
possible short exact sequence that exists in an abelian category.

Example 2.3.23. Let A be any abelian category and a be an object of A.
The sequence

0% a5 0%0%0
is a short exact sequence. To verify this, we check exactness at each subse-
quence:

e The sequence 0 9 o M2 4 is exact at a because the image of the morphism
0 is 0 (see Example 2.3.17) and the kernel of the identity morphism is 0.

e The sequence a Moy 4 % 0 is exact at a because the image of the iden-
tity morphism id, is a (see Proposition 2.3.16) and the kernel of the 0
morphism is a (see Example 1.5.2).

e The sequence a % 02 01is exact at 0 because the image of the 0 mor-
phism is 0 (see Example 2.3.17) and the kernel of the 0 morphism is 0
(see Example 1.5.2).

While this example is somewhat degenerate, it establishes that exact se-
quences exist and that the definition is consistent with our intuition. More
interesting examples arise from the fundamental constructions involving prod-
ucts and kernels. The next example shows how products in abelian categories
induce short exact sequences.
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Example 2.3.24. Let A be an abelian category, a and b be two objects of A.
We will construct a short exact sequence

0—a—>axb—>b—0.

To do that, begin by recalling from Definition 1.2.9 that there exist mor-
phisms p, € Homy(a x b,a) and p, € Homy(a x b,b) such that: if = is an
object of A and if f, € Homyu(z,a) and f, € Homyu(z, b) are morphisms of A,
then there exists a unique morphism f € Homy(x, a x b) such that p,o f = f,
and p, o f = fp. In particular, if we choose x = a, f, = id, and f, = 0, there
exists a unique morphism i, € Homy(a,a x b) such that p, o i, = id, and
py © 1, = 0. Similarly, if we choose x = b, f, = 0 and f, = id;, there exists a
unique morphism i, € Homy (b, a X b) such that p, o i, = 0 and py, 0 i, = id,,.
We will use these morphisms and show that the sequence

0—asaxb®b—0 (2.3.1)

is exact.

To show that this sequence is exact at a, we will verify that, if z is an object
of A and f € Homy(z, a) is a morphism such that i, o f = 0, then f = 0. This
will imply that ker(a) = 0 (see Definition 1.5.6). In fact, if i, o f = 0, then

f=ideof = (py0ia) o f = poo (iao f) = pao0=0.

To show that the sequence (2.3.1) is exact at a x b, by definition, we must
show that im(i,) = ker(p,). Since i, is a monomorphism, this is equivalent to
showing that (a,i,) is the kernel-pair of p, (see Proposition 2.3.16). So, we
will verify that, if x is an object of A and f € Homy(x,a X b) is a morphism
such that p, o f = 0, then there exists a unique morphism v € Homy(z, a)
such that 7, ou = f. In fact, if we choose u = p, o f, then

igou=1,0(pgof)=(igops)of=idsof =f.

The uniqueness of u follows from the fact that i, is a monomorphism (which
was proved in the previous paragraph).

Finally, to show that the sequence (2.3.1) is exact at b, we will verify that
(b, pp) is the cokernel of i,. Since (a,i,) is the kernel of p,, this will imply that
im(py) = b (see Proposition 2.3.19). To verify that (b, py) is the cokernel of i,
we must check that, if 2 is an object of A and f € Homy(ax b, x) is a morphism
such that foi, = 0, then there exists a unique morphism u € Homy (b, z) such
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that uwop, = f. In fact, if we choose u = f o1y, since f o, = 0, we have

f=[oldaxs = fo(iaopativop)=fo(iaopa)+ folivop)=uop,.

The uniqueness of u follows from the fact that p, o 7, = id,,.

The next example shows how kernels in abelian categories induce short exact
sequences.

Example 2.3.25. Let A be an abelian category, a, b be two objects of A, and
f € Homy(a, b) be a morphism. We can construct a short exact sequence

0 — ker(f) = a — im(f) — 0.

To justify this claim, we will construct each subsequence of this short exact
sequence and explain why it is exact.

e First, denote by (ker(f), k) the kernel-pair of the morphism f (see Defini-
tion 1.5.6). By Example 1.7.4, we know that &k is a monomorphism, and
hence, we know that its kernel is 0. Since the image of the 0 morphism is
also 0 (see Example 2.3.17), we see that the sequence 0 2 ker(f) 5 s
exact at ker(f).

e Next, recall from Definition 2.3.13 that there exist e € Homy(a,im(f))
and m : Homy (im(f),b) such that m is monic and f = moe. Since m
is monic, the kernel of e is equal to the kernel of f (as f ok = 0 if and
only if e o k = 0). Since k is a monomorphism, its image is also equal to
ker(f) (see Proposition 2.3.16). Hence, the sequence ker(f) 5aS im(f)
is exact at a.

e Finally, recall from Proposition 2.3.16 that the image of e is equal to the
image of f. Since the kernel of the morphism 0 : im(f) — 0 is im(f), it

follows that the sequence a — im(f) 2 0 is exact at im(f).

These examples illustrate how exact sequences arise naturally from the basic
morphisms in abelian categories. However, exactness is a strong condition, and
most sequences are not exact. To see an evidence of this, consider the following
example from linear algebra.

Example 2.3.26. Consider the sequence R L R? 5 R? in the category of
real vector spaces, where T'(z) = (z,0) and S(z,y) = (z,y,0). This sequence
is not ezact at R?, since the image of T is R x {0} and S is injective, then

im(T) = R x {0} # {(0,0)} = ker(S).
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We will close this section with a result that formalizes the idea that the
exactness of the sequence 0 — a — b at a is an abstraction of injectivity, and
the exactness of the sequence b — ¢ — 0 at ¢ is an abstraction of surjectivity.

Proposition 2.3.27. Let A be an abelian category and a,b be two of its
objects.

(a) If f € Homy(a,b) is such that the sequence 0 — a Is bis exact at a, then
f is a monomorphism.

(b) If f € Homy(a,b) is such that the sequence a I b — 0is exact at b, then
f is an epimorphism.

Proof. We will prove each part separately.

(a) Assume the sequence 0 — a I, b is exact at a. By definition of exact-
ness, this means that im(0 — a) = ker(f). Since the image of the zero
morphism 0 — a is 0 (see Example 2.3.17), we have ker(f) = 0.

To show that f is a monomorphism, let x be an object of A and let
g, h € Homy(x, a) be morphisms such that fog = foh. We need to show
that g = h. Since fog = foh, then fo(g—h) = 0, which implies that g—h
factors through ker(f). Since ker(f) = 0, this means that there exists a
unique morphism u : x — 0 (the zero morphism) such that g — h = ko u,
where k : 0 — a is the kernel morphism (see Definition 1.5.6). Since
kowu =0, sois g—h =0. This implies that ¢ = h and proves that f is a
monomorphism.

(b) Assume that the sequence a Iy b — 0 is exact at b. By definition of ex-
actness, this means that im(f) = ker(b — 0). Since the kernel of the zero
morphism b — 0 is all of b (see Example 1.5.2), we have im(f) = b. Now,
recall from Remark 2.3.20 that there exist a unique (up to composition
with isomorphisms) epimorphism e € Homy(a,im(f)) and a unique (up
to composition with isomorphisms) monomorphism m € Homy (im(f), b)
such that f = moe. Since im(f) = b, we can choose f = id,of. This
implies that f is an epimorphism. U

2.4. EXACT FUNCTORS

When working with categories, we are naturally interested in functors that
preserve some of their structure. Functors that preserve limits and colimits
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are called ezxact functors. They play central roles in homological algebra,
algebraic geometry, and category theory. In this section, we will define this
notion precisely and illustrate it with examples. We begin with the abstract
definition of exact functors.

Definition 2.4.1 (exact functors). Given two categories € and D, a functor
F : € — D between them is said to be: left-exact when all finite limits exist in
C and F preserves these finite limits; right-exact when all finite colimits exist
in € and F' preserves these finite colimits, and ezact when all finite limits and
colimits exist in € and F' preserves these finite limits and finite colimits.

We will expand a little more on the definition above. First, consider the
definition of a left-exact functor. Recall that limits are defined for diagrams
in categories. So, given two categories J and C, a diagram D is a functor
D :J — €. The limit of this diagram is a pair (¢, {¢;};), where ¢ is an
object of €, ¢; is a morphism in Home(c, D(7)) for every object i of J, and the
pair (¢, {¢;};) satisfies the universal property of limits (see Definition 2.3.1).
Moreover, this limit is said to be finite, when the category J has finitely-many
objects and finitely-many morphisms, that is, Obj(J) and Mor(C) are finite
sets.

Next, recall that for every category D and every functor F': € — D, we can
define a composition functor F o D : J — D (see Proposition 2.1.6). Notice
that F' o D is a diagram in D. Hence, we can also define the limit of this
diagram F o D in D. By definition, F' is left-exact when (F(c), {F(¢:)}i) is
the limit of the diagram F o D for every diagram D : J — € whose limit in €
is (¢, {¢:}:)-

Similarly, a functor is said to be right-exact when the pair (F(c), {F(¢:)}4)
is the colimit of the diagram F o D for every diagram D : J — € for which
(¢, {¢:}:) is the colimit in €. Notice that these definitions capture different
ways in which a functor can interact with limits and colimits. To understand
these distinctions, we begin with the simplest case where exactness is auto-
matic.

Example 2.4.2. For every category € in which all finite limits and colimits
exist, the identity functor Ide (see Example 2.1.2) is exact. To justify this
claim, suppose J is a finite category and D : J — € is a diagram in C.

If the limit of a diagram D exists, it will be a pair (¢, {¢;}:), where ¢ is
an object of C, ¢; is a morphism in Home(c, D(7)) for every object i of J,
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and the universal property of limits is satisfied by (¢, {¢;};). When we apply
the functor Ide to this pair, we obtain the pair (Ide(c), {Ide(¢;)}:), where
Ide(c) = ¢ and Ide(¢;) = ¢; for all i € Obj(J). Since Ide oD = D, the limit
of the diagram Ide oD is exactly the pair (Ide(c), {Ide(¢;)}i). This shows that
Ide preserves limits, that is, it is left-exact.

If the colimit of the diagram D also exists, it will be a pair (¢, {¢;};), where
¢ is an object of €, 1); is a morphism in Home(D(i), ¢) for every object i of J,
and the universal property of colimits is satisfied by this pair. When we apply
the functor Ide, we obtain the pair (Ide(c), {Ide(v;)}:) = (¢, {i}:). Hence,
the colimit of the diagram Ide oD = D is exactly the pair (Ide(c), {Ide(¢)}:).
This shows that Ide also preserves colimits, that is, it is also right-exact.

Identity functors provide no obstruction to exactness because they preserve
all structures of the category. More interesting examples arise from Hom-
functors, which behave differently with respect to exactness.

Example 2.4.3. Let C be a category in which all finite limits and colimits
exist, let x be a fixed object of €, and denote by D the category of sets
(see Example 1.1.3). The covariant Hom-functor Home(z, —) : € — D (see
Example 2.1.4) is left-exact but generally not right-exact.

To justify the claim that Home(z,—) is left-exact, we will show that it
preserves finite limits. To do that, let J be a finite category, let D : J — € be
a diagram in €, and denote by (¢, {t;};) its limit. We want to show that the
pair (Home(z, ¢), {Home(x,1;)};) is the limit of the diagram Home(z, —) o D.

To do that, let C' be a set and f; : C — Home(x, D(i)) be a function for
each i € Obj(J). We must construct a function u : C' — Home(z, ¢) such that
i ou = f; for all ¢ € Obj(J). To do that, first notice that, for each element
* € C, we have a family of functions { fi(x) : « — D(7)},. Since (c, {t/;};) is the
limit of the diagram D, there exists a unique morphism u, : * — ¢ such that
Y;ou, = fi(*). Hence, we can define a function u : C' — Home(z, ¢) by setting
u(x) = u,. The uniqueness of the function u follows from the uniquenesses of
each one of the morphisms u,.

To show that Home(x, —) is not necessarily right-exact, consider the case
where € is abelian. Then, recall hat there exists a zero object 0 in € and that
Home(z, 0) contains exactly one morphism (since 0 is also terminal). However,
the set with one element is not an initial object in the category of sets (see
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Example 1.2.6). This means that the functor Home(x, —) does not preserve
initial objects, which are colimits of empty diagrams (see Example 2.3.9).

Hom-functors illustrate the case of functors that are left-exact and not right-
exact. In the next example, we will show a functor that is right-exact and not
left-exact.

Example 2.4.4. Let Sets be the category of sets (see Example 1.1.3), and
recall from Example 2.3.2 and Example 2.3.8 that all finite limits and colimits
exist in Sets. Then, choose a set S with more than one element and define a
functor F' : Sets — Sets by assigning:

e the set F'(X) := S5 x X to each set X,
e the function F(f) := (ids x f) to each function f: X — Y.

We will show that this functor is right-exact but not left-exact.

To show that F' preserves finite colimits, let J be a finite category and
D :J — Sets be a diagram in Sets. Recall from Example 2.3.8 that the
colimit of D is the pair (C, {¢;};), where:

e ('isthe quotient of the set | |, D(7) by the equivalence relation ~ generated
by d; ~ d; if d; € D(i), d; € D(j), i,j € Obj(J), and there exists a
morphism f € Hom;(3, j) such that D(f)(d;) = d;,

e for each i € Obj(J), the function ¢; : D(i) — C identifies an element
d; € D(i) with its corresponding equivalence class inside | |, D(7)/ ~.

Hence, F(colim D) = (C' x S, {¢; x idg};).

Now, consider the diagram (F' o D) : 3 — Sets. We want to show that
the colimit of F' o D is the same as F'(colim D). To do that, recall from
Example 2.3.8 again that colim(F o D) is the pair (C’, {¢;};) where:

e (' is the quotient of the set | |.(D(i) x S) by the equivalence relation
generated by (d;, s) = (d;,s') if d; € D(i), d; € D(j), s,s € S and there
exists a morphism f € Homy(4, j) such that (D(f) x idg) (d;, s) = (d;, '),

e for each i € Obj(J), the function ¢; : D(i) x S — C’ identifies an element
(d;,s) € D(1) x S with its equivalence class inside | |,(D(z) x S)/ .

Using these descriptions it becomes easy to see that F'(C') = C' and F(¢;) = ¢;
for all 4 € Obj(J). This shows that I preserves finite colimits.
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Now, to show that F' does not preserve finite limits, we show that it fails
to preserve terminal objects. The terminal object in Sets is a set with one
element However, F'({e}) = 5 x {e} is not a terminal object in Sets, since S
has more than one element. Therefore, F' does not preserve terminal objects,
which are limits of empty diagrams (see Example 2.3.3), and hence F' is not
left-exact.

We have now seen functors that are fully exact, only left-exact and only
right-exact. To complete the picture, we will present an example of a functor
that fails to be exact in any sense.

Example 2.4.5. Consider the category of sets from Example 1.1.3. Recall
that all finite limits and colimits exist in this category (see Example 2.3.2
and Example 2.3.8). Then, let F' : Sets — Sets be the functor defined by
assigning:

e the set {0,1} to every set in Obj(Sets),
e the identity function of the set {0, 1} to every function in Mor(Sets).

This functor is neither left-exact nor right-exact. It is not left-exact because
it does not preserve terminal objects in Sets, which are the sets with one
element (see Example 1.2.6). It is not right-exact because it does not preserve
the initial object in Sets, which is the empty set (see Example 1.2.6). Since a
functor is left-exact if it preserves all finite limits (including terminal objects,
see Example 2.3.3) and right-exact if it preserves all finite colimits (including
initial objects, see Example 2.3.9), F' is neither.

We close this section with a result that characterizes exact functors on
abelian categories in terms of kernels, cokernels and exact sequences.

Proposition 2.4.6. Let A and B be two abelian categories and F : A — B
be a functor.

(a) If all finite limits exist in A, then: F' is left-exact if and only if F' is
additive and F' (ker(f)) = ker (F'(f)) for every f € Mor(A).

(b) If all finite colimits exist in A, then: F is right-exact if and only if F' is
additive and F (coker(f)) = coker (F'(f)) for every f € Mor(A).

(c) If all finite limits and colimits exist in A, then: F' is exact if and only if
F' is additive and, for every exact sequence 0 — a — b — ¢ — 0 in A, the
sequence 0 — F(a) — F(b) — F(c) — 0 is exact in B.
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Proof. We will prove only part (a), as he proof of part (b) is very similar to
that of part (a) and part (c) follows from part (a) and part (b).

On the one hand, assume F' that is left-exact. First, we will prove that F’
is additive. Since A is abelian, it has a zero object 0, which is terminal. Since
F' preserves finite limits and terminal objects are finite limits, F' preserves
terminal objects. In particular, F'(0) is a terminal object of B. In an abelian
category, any terminal object is also initial. Hence F'(0) is a zero object in B.

Now consider any two objects a and b of A. Their product a x b exists
and is a finite limit. Since F' preserves finite limits, F'(a x b) is isomorphic
to F(a) x F(b). In an abelian category, finite products coincide with finite
coproducts. This implies that F' also preserves finite biproducts. Therefore,
F' is additive.

The fact that F' also preserves kernels follows from the fact that F' preserves
finite limits and the fact that kernels (or, more generally, equalizers) are finite
limits.

On the other hand, assume F is additive and preserves kernels. We show
F preserves all finite limits. To do that, we will show that every finite limit
is isomorphic with the equalizer of certain morphisms between products in A.
This is a general construction that, in this case, will imply that F' preserves
finite limits, since it is additive (preserves terminal objects and finite products)
and preserves kernels.

We begin by considering two finite products within A. First, define the
product P := [];copj) D(4). Then, for each morphism f € Homy(i, j), denote
the object j € ODbj(J) by jy, and define the product P := [T cporia) DUs)-
The universal projections P; — D(7) will be denoted by ;, while the universal
projections P, — D(j¢) will be denoted by 7 (see Definition 1.2.9).

Now, we will construct two morphisms between P, and P». To construct
the first one, notice that, for every f € Hom;(i,j), there is a morphism
m; € Homy (P, D;). Hence, by the universal property of products (see Def-
inition 1.2.9), there exists a unique morphism v € Homyg(P;, P,) such that
mpou = m;, for all f € Mor(A). To construct the second one, notice that
there is a morphism (D(f) o m;;) € Homyu(Pr, D(jy)) for every morphism
f € Homy(is, jr). Hence, by the universal property of products (see Defi-
nition 1.2.9), there exists a unique morphism v € Homyg(Py, P2) such that
mpov = D(f)om, forall f€ Mor(A).
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To finish this proof, we will show that the equalizer of u and v is the limit of
the diagram D. To do that, begin by denoting this equalizer by (E, e), where
E is an object of A and e € Homy(E, P;) is the universal morphism such that
uoe =woe (see Definition 1.5.1). Then, notice that (F,{m; oe};) is a cone
over D. In fact, if f € Homy(i, 7), then

D(f)o(moe)=(D(f)om)oe
~(ryov)oc
o (vo)
~rpo(uoe)
= (rpou)oe

=T oe.

This shows that (E, {m; 0e};) is a cone over D. Next, given any cone (¢, {¢; };)
over D, we have to construct a unique morphism w € Homy(c, E') such that
(m; 0e) ow = ¢; for all i € Obj(J). To do that, first notice that the universal
property of products implies that there exists a morphism ¢ € Homy(c, P;)
such that m;0¢ = ¢, for all i € Obj(J) (see Definition 1.2.9). Next, notice that
the fact that (¢, {¢;};) is a cone over D implies that uo ¢ = v o ¢. Hence, the
universal property of equalizers implies that there exists a unique morphism
w € Homy (e, E) such that e ow = ¢ (see Definition 1.5.1). As a consequence,
mioeow = m;0¢p = ¢ for all i € Obj(J). This completes the proof that (E, e)
is the limit of the diagram D in A. U

2.5. ADJOINT F'UNCTORS

The concept of adjoint functors captures one of the most fundamental re-
lationships in category theory: a natural correspondence between morphism
sets in two different categories. Adjunctions unify numerous mathematical
phenomena and universal properties. In this section, we will introduce the
abstract definition of adjoint functors, explore several key examples, and es-
tablish their basic properties regarding exactness.

Definition 2.5.1 (adjoint functors). Given two categories € and D, and a
pair of functors F': € — D and G : D — C, we say that F' and G are adjoint
functors if there exist natural bijections

Homp (F(c),d) = Home(c, G(d)).
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In this case, we say that F'is left adjoint to G, and that G is right adjoint to
F.

The definition above captures a fundamental pattern: having a morphism
from F'(c) to d in D is equivalent to having a morphism from ¢ to G(d) in C.
This correspondence preserves the relevant structure of morphism composition
through the naturality condition. This translation between categories mani-
fests in numerous mathematical contexts, as the following examples illustrate.
To build intuition, we begin with the simplest cases where a functor is adjoint
to itself.

Example 2.5.2. For every category C, the identity functor Ide : € — € is
both left and right adjoint to itself. Indeed, in this case, we have equalities:

Home(Ide(ey), ¢2) = Home(cq, ¢a) = Home(cq, Ide(ca)).

The naturality condition is automatically satisfied since the identity functor
acts trivially on both objects and morphisms.

The identity adjunction, while simple, demonstrates the reflexive nature
of adjoint relationships. More interesting examples arise when the categories
involved have additional structure, particularly zero objects.

Example 2.5.3. Let A be an abelian category with zero object 0. The zero
functor Z : A — A, which assigns every object to 0 and every morphism to
the zero morphism idg : 0 — 0, is both left and right adjoint to itself. Indeed,
we have natural bijections
Homy(Z(ay),as) = Homyg(0, as)

= {0 :0— CLQ}

= {0 tap — 0}

= Homy (a4, 0)

= Homy (a1, Z(az)).
The naturality of this bijection follows from the fact that composition with
any morphism involving the zero object always yields the zero morphism.

The example above is a particular case of a general phenomenon: every
universal construction gives rise to an adjunction. More precisely, limits and
colimits correspond to adjunctions between a category and a functor category
(or diagram category). While making this relationship fully rigorous requires
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the notion of natural transformations, which will be developed in subsequent
sections, we can already observe that universal properties inherently exhibit
the pattern of adjoint relationships.

The previous examples feature symmetric adjunctions where the same func-
tor serves as both left and right adjoint. More commonly, however, adjoint
relationships are asymmetric, with each functor playing a distinct role. A
paradigmatic example of such asymmetry is the adjunction between free and
forgetful functors, which we now examine.

Example 2.5.4. Let k be a field, let A be the category of k-vector spaces,
and let B be the category of sets. The forgetful functor F' : A — B is defined
by assigning:

e to each k-vector space, its underlying set,

e to each linear transformation, its underlying function.
The fact that F' is a functor follows from the observation that the composition
of linear transformations is the composition of their underlying functions and

the observation that the identity linear transformation is the identity function
on the underlying set.

This functor F' has a left adjoint G : B — A, which is defined by assigning:

e to each set S, the vector space with basis S (the free vector space gener-
ated by 9),

e to each function f : S — S, the unique linear transformation G(f) :
G(S) — G(5') that extends f linearly:

G(f)(Mis1 4+ Aasn) = Af(s1) + -+ A f(sn).

The fact that G is left adjoint to F', follows from the fact that there exist
natural bijections

Hom(G(S), V) = Homg (S, F(V)),

since any function from a set S to the underlying set of a vector space V'

extends uniquely to a linear transformation from the vector space generated
by S to V.

This adjunction between freely generated and forgetful functors exemplifies a
pattern that appears throughout algebra. Another fundamental construction
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that leads to adjunctions is the tensor product of vector spaces, which we
examine next.

Example 2.5.5. Let k be a field and let C be the category of k-vector spaces.
Recall that the tensor product of k-vector spaces is defined as follows. Given
two k-vector spaces V' and W, their tensor product is a k-vector space V @, W
endowed with a bilinear map ¢ : V x W — V @, W satisfying the universal
property: for every k-vector space U and bilinear map B : V x W — U, there
exists a unique linear transformation 7' : V ®, W — U such that B =T o ¢.
We will see how this universal property leads to an adjunction of functors.

First, notice that the tensor product induces a functor from € to itself.
Indeed, given a fixed k-vector space W, we have a functor F' : € — C that
assigns:

e to each k-vector space V', the k-vector space FI(V) =V @, W,

e to each linear transformation 7' : V; — V5, the linear transformation
F(T): Vi@ W — Vo ® W given by

F(T) (v @wy 4+ v, @wy) = T(v1) @wy + - -+ + T(v,) @ wy.

The fact that F' is a functor follows from the bilinearity of the tensor product:
F(ldv) = idV@W and F(TQ o T1> = F(Tz) o F(Tl)

To construct a right adjoint to F', recall the universal property of the tensor
product: for every k-vector space U and bilinear map B : V x W — U, there
exists a unique linear transformation 7' : V ®, W — U such that B = T o .
This establishes a bijection between linear transformations in Home(V & W, U)
and bilinear maps B: V x W — U.

Now, observe that we can identify bilinear maps B : V x W — U with linear
transformations ¢ : V' — Homy (W, U) via the correspondence:

B(v,w) = (¢(v))(w).
Indeed, given a bilinear map B, for each v € V, the map w — B(v,w)
is linear in w, so it defines an element of Homy(W,U). The assignment
v — (w +— B(v,w)) is linear in v by the bilinearity of B. Conversely, given
¢V — Homy (W, U), define B(v,w) = (¢(v))(w), which is bilinear. These

constructions are mutually inverse.

Combining these bijections, we obtain natural bijections

Home(V @, W, U) = Home(V, Homy (W, U)).



80 TIAGO MACEDO

The naturality of these bijections follows from their construction via universal
properties. This means that the functor F/(V) =V @ W is left adjoint to the
functor G(U) = Homy (W, U).

Having explored various examples of adjoint functors, we now turn to their
fundamental interaction with exactness properties. This relationship is par-
ticularly important in homological algebra, as it provides powerful tools for
transferring exact sequences between categories. The key result is that left ad-
joints preserve colimits while right adjoints preserve limits, and in particular,
left adjoints are right-exact while right adjoints are left-exact.

Proposition 2.5.6. Let C and D be categories with finite limits and colimits,
and let F': € — D and G : D — C be functors between these categories. If F
is left adjoint to GG, then F is right-exact and G is left-exact.

Proof. We will prove that G is left-exact. The proof that F' is right-exact is
completely analogous.

To show that G is left-exact, let J be a finite category and D : J — D be
a diagram in D. Since D has finite limits, there exists a limit of D, which we
denote by (d, {m;};). We will show that the pair (G(d), {G(m;)};) is the limit
of the diagram (Go D) :J — € in C.

To do that, first, we verify that (G(d),{G(m;)};) forms a cone over G o D.
In fact, for every morphism f € Homy(4, j), we have

G(D(f)) o G(mi) = G(D(f) o mi) = G(m;),
since (d, {m;};) is a cone over D and G is a functor.
Next, to verify that (G(d), {G(m;)},) satisfies the universal property of the
limit of G o D, let ¢ be an object of € and {¢;}; be a family of morphisms
such that G(D(f)) o ¢; = ¢, for every morphism f € Homy(7, j). We will show

there exists a unique morphism v € Home(c, G(d)) such that G(m;) ov = ¢;
for all i € Obj(J).

Since F' is left adjoint to G, each morphism ¢; : ¢ — G(D(i)) corresponds
to a unique morphism ¢; : F(¢) — D(i) in D via the adjunction bijection
Home(c, G(D(7))) = Homqp (F(c), D(i)).
The naturality of these bijections and the fact that G(D(f)) o ¢; = ¢; imply

that D(f)ot); = 1, for every morphism f € Hom;(i, j). Therefore, {¢;}; forms
a cone over the diagram D. By the universal property of the limit (d, {m;};),
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there exists a unique morphism v € Homq (F(c),d) such that m; o u = 1; for
all i € Obj(J). Now, the adjunction bijection

Homp (F(c),d) = Home(c, G(d))
assigns the morphism u to a unique morphism v € Home(c, G(d)). We claim
that this v satisfies G(m;) o v = ¢; for all i € Obj(J). This follows from the

naturality of the adjunction bijections applied to 7; and the fact that m;ou = 1;
corresponds to ¢;.

The uniqueness of v follows from the uniqueness of u and the bijectivity of
the adjunction. This shows that (G(d),{G(m;)};) is the limit of the diagram
G o D in @, which means that GG preserves finite limits, or equivalently, that
G is a left-exact functor. ([l



Part 111

Tensor categories

The central theme of this part is categories endowed with an internal mul-
tiplication, known as monoidal categories (or tensor categories). We formally
define the tensor bifunctors and the unit objects, paying particular attention
to the coherence constraints (the associator and unitor natural isomorphisms)
that govern them. Finally, we refine this structure by introducing commu-
tativity. We progress from braided monoidal categories, where the order of
tensor factors can be exchanged via an isomorphism, to symmetric monoidal
categories, where this exchange is involutive. These definitions provide the
essential framework for studying algebra-like structures within categories. We
begin this part, however, with the concepts of natural transformations and
equivalences of categories, which will be used throughout the remainder of the
text.

3.1. NATURAL TRANSFORMATIONS

While functors relate categories, natural transformations relate functors
themselves. That is, they provide a way to compare two functors in a manner
that respects their underlying structures. In this section, we will define natu-
ral transformations, provide examples, and prove that natural transformations
can also be composed.

Definition 3.1.1. Given categories, € and D, and given functors between
them, F,G : C — D, a natural transformation n : F' = G between these
functors consists of a family of morphisms,

{nx : F(X) = G(X) € Mor(D) | X € Obj(C)},
satisfying the following naturality condition:
G(f)onx =ny o F(f) forevery f €& Home(X,Y).

A natural transformation n : F' = G is said to be a natural isomorphism when

nx € Homp(F(X),G(X)) is an isomorphism for all X € Obj(C).
82
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To illustrate the abstract definition of a natural transformation given above,
we will start with the simplest example, that of the identity transformation.

Example 3.1.2. For any functor F' : € — D, the identity natural transfor-
mation idg : F' = F is given by

The properties of the identity morphisms imply that idz satisfies the naturality
condition; in fact,

F(f)o idpx) = F(f) = idpy) oF'(f)

for every morphism f € Home(X,Y). Notice that idp is also a natural iso-
morphism.

To give a less trivial example of a natural transformation, we will consider
a category with two objects and two functors from this category to itself.

Example 3.1.3. Let C be the category with two objects, Obj(C) = {A, B},
and three morphisms, Mor(C) = {id4, f,idg}, where f : A — B. There exist

three different functors from € to itself: the identity functor Ide; the functor
F . € — € defined by

F(A)=F(B)=A and F(ida) = F(f) = F(idg) = idu;
and the functor G : € — € defined by
G(A)=G(B)=B and G(ids) = G(f) = G(idp) =idg.

A natural transformation 7 : Ide = F would consist of two morphisms,
na:A—A and np:B— A

Since there exist no morphisms in Home(B, A), no such natural transformation
exists. Similarly, no natural transformation 7 : Ide = G exists. Now, a natural
transformation 7 : F' = G consists of two morphisms,

na: F(A) - G(A) and np: F(B) — G(B),

satisfying naturality conditions. Since FI(A) = F(B) = A, G(A) =G(B) =B
and Home(A, B) = {f}, then n4 = np = f. In this case, the naturality condi-
tions are satisfied, since F\(¢) = id4 and G(¢) = idp for all ¢ € {idy, f,idp}.
In fact,

F(p)ona=idaof = f = foidp =npoG(p),
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for all ¢ € {ida, f,idg}. This shows an example of a natural transformation
different from the identity one. Moreover, since f is not an isomorphism in D,
this natural transformation is also not a natural isomorphism.

In the next section, we will use natural transformations to define equiva-
lences of categories. Then, we will provide other examples of natural trans-
formations. Before that, we will state and prove a technical result regarding
natural transformations that will also be used in the next section.

Proposition 3.1.4. Let C, D be categories, let E, F,G,H : € — D be func-
tors, and let ( : E = F, n: F = G, 0§ : G = H be natural transformations.

(a) The family (@ on) : F = H, defined by
(Bon)x =0xonx foreach X € Obj(C),

is a natural transformation.
(b) The natural transformations (# o n) o ¢ and 6 o (o () are equal.
(¢) The natural transformation n : F' = G is a natural isomorphism if and

only if there exists a natural transformation ' : G = F' such that

non=idrg and non =idg.

Proof. (a) We need to verify that the family {(fon)x | X € Obj(C)} satisfies
the corresponding naturality conditions. To do that, notice that, for every
morphism f € Home(X,Y'), we have

H(f)o(0on)x = H(f)o (6x onx)
= (H(f)o0x)onx
= (0y o G(f)) o nx
= Oy o (G(f) o nx)
= by o (ny o F(f))
= (0y ony) o F(f)
= (0 on)y o F(f).
This shows that 6 o n satisfies the naturality conditions and thus, that it

is a natural transformation.

(b) From item (a), we know that (6 on)o( and o (no() are natural transfor-
mations. Using their explicit definitions, we can see that, for every object
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X € Obj(€), we have:

((fon)o()x =(0omn)xolx
= (0x onx) o (x
= fx o (1x © (x)
=fxo(nol)x
= (#o(nol))x.
This means that (fon) o =600 (no(), as we wanted to show.

(¢) Recall from Definition 3.1.1 that the natural transformation n : F' = G
is a natural isomorphism when 7 is an isomorphism for all X € Obj(C).
By Definition 1.2.1, this means that, for each object X of C, there exists
a morphism n’ : G(X) — F(X) such that

ny onx =idpx)  and 1y oy =idg() -

To finish this proof, we will show that the family {n% | X € Obj(€)} is
a natural transformation. To do that, let X and Y be objects of C, let f
be a morphism in Home(X,Y'), and notice that:

F(f)ony =idpy)oF (f) on
=1y ony o F(f)ony
=ny o G(f) onx only
=1y o G(f) oidg(x)

=1y © G(f).
This shows that ' : G = F' is a natural transformation. The fact that
n on =1idr and non’ = idg follows from the construction of 7'. O

3.2. EQUIVALENCES OF CATEGORIES

Equivalences of categories is the formal notion that captures the idea of
categories that “behave in the same way”. In this section, we will formally
define equivalences of categories, provide some examples illustrating when two
categories are equivalent or non-equivalent, and prove two results regarding
equivalences of categories that will be used in the subsequent sections.

We begin with the abstract definition of an equivalence of categories.
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Definition 3.2.1. A functor F': € — D is said to be an equivalence of cate-
gories when there exists a functor G : D — € and two natural isomorphisms,
n and €, such that:

n:lde=GoF and €:FoG=Idyp.

In this case, one says that C and D are equivalent categories and denotes this
relation by € ~ D.

Notice that “equivalence” is a weaker notion than that of “isomorphism” of
categories. Namely, an isomorphism of categories consists of a pair of functors,
F:C— Dand G:D — C, such that Go F = Ide and F o G = Idyp (strict
equality). This implies that, while isomorphisms of categories require a per-
fect one-to-one correspondence between objects and morphisms, equivalences
allow for more flexibility by ignoring “inessential” differences, such as multiple
isomorphic copies of objects. This difference makes equivalences of categories
often more useful in practice.

We turn now to some examples that illustrate these concepts. We begin
with the simplest example of an equivalence of categories, which incidentally
this is also an isomorphism of categories, that of the identity functor.

Example 3.2.2. Every category € is equivalent to itself via the identity
functor Ide : € — € (constructed in Example 2.1.2). In fact, if we take
F = G = Ide, we have that FloGG = Ideg olde = Ide and GoF = Ide o Ide = Ide.
Hence, in this case, the natural isomorphisms 7 and € can be chosen to be the
identity natural transformations (constructed in Example 3.1.2).

While the identity functor is an equivalence of a category with itself, more
interesting examples arise when comparing different categories.

Example 3.2.3. Let € be the category with one object, Obj(€) = {X}, and
one morphism, Mor(€) = {idx}. Then, let D be the category with two objects,
Obj(D) = {Y, Z}, and two non-identity morphisms, Mor(D) = {idy,idz, f, g},
where f € Homp (Y, Z), g € Homp(Z,Y), fog=1idz and go f = idy. These
categories are equivalent and non-isomorphic.

To see this, define the functor F': € — D by choosing
F(X)=Y and F(idyx)=idy,
and define the functor G : D — € by choosing
GY)=GZ)=X and G(idy)=G(@ldz) =G(f) =G(g) =idx .
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To show that F' and G are equivalences of categories, we must construct natural
isomorphisms 7 and e such that n:Ide = (Go F') and € : (F'o G) = Idyp.

Since G o F' is the identity functor on €, we can choose 7 to be the identity

natural transformation. Then, to construct €, notice that the functor F'o G is
given by:
(FoG)(Y)=(FoG)(2)=Y,

(FoG)(idy) = (FoG)(idz) = (FoG)(f) = (FoG)(g) = idy .
Hence, we must choose ey € Homp(Y,Y') and €z € Homyp (Y, Z) satisfying the
naturality conditions. Since Homqp(Y,Y) = {idy } and Homy (Y, Z) = {f}, we
must choose ¢y = idy and ez = f. To verify that this € : (F o G) = Idp
is indeed a natural transformation, we write down the naturality conditions
explicitly:

€y O (F o G)(ldy) = ldy Oidy = Id@(ldy) O €y,
€z O (F ®) G)(ldz) = f @) ldy = ldy Of = Id@(ldz) C €y,
€70 (FoG)(f) = foidy =Idp(f)oey,
€y O (F o) G)(g) = ldy Oidy = ldy =go f = Id@(g) O €y.
Moreover, notice that ¢y = idy and €z = f are isomorphisms. This means

that € is in fact a natural isomorphism.

The argument above shows that € and D are equivalent categories (and that
F and G are equivalences). However, these categories are not isomorphic. In
fact, since no functor G : D — € can be injective on objects and morphisms,
there exists no functor F' : € — D such that (F o G) is injective on objects
and morphisms. This implies that there exists no such functors ' and G such
that (F' o G) is equal to the identity functor Idyp.

Not all small categories are equivalent, however. The next example shows a
case of explicit categories that are not equivalent.
Example 3.2.4. Let C be the category with one object and one morphism,
Obj(€) ={X} and Mor(C) = {idx}.
Then, let D be the category with two objects and only identity morphisms,
Obj(D) ={Y.Z} and Mor(D) = {idy,idz}.

These categories are not equivalent.
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To see this, we explicitly construct all possible functors between these cat-
egories. We begin by constructing the unique functor from D to C. In fact,
notice that, since € has only one object, the only possible functor G : D — €
is given by

GIY)=G(Z)=X and G(idy) = G(idy) = idx .

Then, notice that there are exactly two functors from C to D, determined by
which object of D is assigned to the object X. In fact, one can define a functor
Fy : € — D by choosing

Fl(X) =Y and Fl(ldx) = idy,
and define a functor F3 : € — D by choosing
FQ(X) =7 and Fg(ldx> = le .

Now, recall from Definition 3.2.1 that, is order for C to be equivalent to
D, there must exist a natural transformation ¢ : F; o G = Idp or a natural
transformation 6 : F5 o G = Idp. In the first case, ¢z should be a morphism
in Homy (Y, Z), which is empty; and in the second case, 0y should be a mor-
phism in Homp(Z,Y'), which is also empty. This means that no such natural
transformations exist, and thus that € is not equivalent to D.

We close this section by showing that equivalence of categories is not just a
property but an equivalence relation on categories. This is formalized in the
following result.

Proposition 3.2.5. Equivalence of categories is an equivalence relation.

Proof. Begin by recalling from Example 3.2.2 that every category is equivalent
to itself via the identity functor. This means that the relation =~ is reflexive.

Next, we will show that, if € ~ D, then D ~ €. To do that, we begin
by recalling from Definition 3.2.1 that, if € ~ D, then there exist: a functor
F:€C — D, afunctor G : D — €, a natural isomorphism 7 : Ide = G o F,
and a natural isomorphism € : F'o G = Idp. By Proposition 3.1.4(c), this
implies that there exist a natural isomorphism 7' : G o F' = Ide and a natural
isomorphism ¢ : Idp = F o G. This means exactly that D ~ €, and shows
that the relation ~ is symmetric.

To complete this proof, we will to show that, if A ~ B and B ~ €, then
A =~ €. To do that, begin by assuming that A ~ B and B ~ C. Then, recall
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that the equivalence A ~ B means that there exist: functors F; : A — B
and Gy : B — A, and natural isomorphisms 7; : Idy = (G 0 F}) and ¢ :
(Fy o G1) = Idg. Similarly, recall that the equivalence B ~ € means that
there exist: functors F, : B — C and G5 : € — B, and natural isomorphisms
ne : Idg = (Gg 0 Fy) and €y : (Fy 0 Go) = Ide. Now, to prove that A ~ C,
begin by noticing that (Fy o F}) : A — € and (G 0 Gs) : € — A are functors
(see Proposition 2.1.6). Thus, we only need to construct natural isomorphisms
¢:1dgy = (GyoGyo Fyo Fy) and ¢ : (Fy o F} 0o G1 0 Go) = Ide.

We will construct the families {¢4 | A € Obj(A)} and {¢¢ | C' € Obj(C)},
and then show that they define the desired natural isomorphisms. Begin by
defining, for each object A of A and for each object C of €, the morphisms

¢a =G ((m)r)o(m)a and Yo :=F ((€1)ayc)) © (€2)c-

Now, we will show that the family {¢4 | A € Obj(A)} defines a natural isomor-
phism. The proof that {¢)c | C' € Obj(C)} also defines a natural isomorphism
is very similar. To unpack the definition of ¢4, begin by recalling that (n;)a
is an isomorphism, (171)4 : A — G1(F1(A)). Then, recall that (12)p is also an
isomorphism, (1n2)p : B — G2(Fy(B)), for every object B of B; in particular,
for B = F1(A). Hence, G((72)r,(a)) is an isomorphism,

G ((m)rw) : Gi(F1(A)) — Gi(Ga(Fa(Fi(A)))),

and thus, ¢4 is an isomorphism ¢4 : A — G1(Ga(Fo(F1(A)))). To conclude
that ¢ is a natural isomorphism, we only need to show that {¢4 | A € Obj(A)}
is in fact a natural transformation. To that end, one can use the fact that G,
is a functor and that 7, is a natural transformation to verify that

G1(Ga(Fa(Fi(f)))) 0 pa = Gi(G2(Fa(Fi(f)))) © G ((12) r(a)) © (1) a
= G (Gao(Fa(Fi(f))) © (ma) myay) © (1) a
= G1 (1) Fy(any © Fi(f)) o (m)a
= G ((m)ray) o GL(Fi(f)) o (m)a
= G1 ((m)ran) o (m)aro f
=oduxof,
for every pair of objects A, A’ of A and every morphism f € Homy(A, A").

This proves that A ~ €, that is, that the relation ~ is also transitive, and
finishes the proof that ~ is an equivalence relation. O
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3.3. PropucTs OF CATEGORIES

Before proceeding, we review products in general, and in particular, prod-
ucts of categories. Recall from Definition 1.2.9 that if € is a category and A, B
are two objects of €, then the product of A and B in C is a triple (P, pa, ps),
where P is an object of € and py : P — A, pg : P — B are morphisms
satisfying a universal property.

For example, recall from Example 1.2.11 that the Cartesian product of sets,
together with their canonical projections, serves as the product in the category
of sets. Similarly, in the category of vector spaces over a fixed field, the direct
sum and their corresponding projections serve as the product.

In this section, we construct the category of small categories, describe the
product in this category, and prove that this product induces a functor satis-
fying certain properties. This construction will be used in the next section to
define monoidal categories.

We begin by considering the category of small categories.

Example 3.3.1. Let Cats be the category whose objects are small categories,
whose morphisms are functors between them, and whose composition is given
by Proposition 2.1.6(a). This is indeed a category: for every (small) category,
there exists an identity functor (see Example 2.1.2), and the composition of
functors is associative (see Proposition 2.1.6(b)).

Next, we describe the product of two categories within the category of small
categories constructed in the previous example.

Example 3.3.2. Consider the category of small categories, Cats, constructed
in Example 3.3.1. We construct the product of two small categories € and D
by providing a triple (€ x D, pe, pp), where € x D is an object (a category),
and pe: € x D — € and pp : € x D — D are morphisms (functors) satisfying
condition (iv) in Definition 1.2.9.

We begin by constructing € x D. Let the objects of € x D be pairs (¢, d),
where ¢ is an object of € and d is an object of D; that is, Obj(€C x D) is
the Cartesian product Obj(€) x Obj(D). Given two objects (¢, d) and (¢, d’)
of € x D, a morphism between them is a pair (f,g), where f : ¢ — ¢ is a
morphism in € and ¢ : d — d’ is a morphism in D; that is,

Homeyn((c,d), (¢';d")) = Home(c, ) x Homyp(d, d').
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Composition of morphisms in € x D is defined component-wise; that is,

(f',9) 0crn (f19) == (f ¢ f, 901 9),
for all (f,g) € Homexn((c,d), (¢, d’)) and (f',¢') € Homexn((¢',d'), (", d")).

We now verify that this construction of € x D is indeed a small category, i.e.,
an object of Cats. First, notice that the objects of € x D forms a set because
both Obj(€) and Obj(D) are sets. Next, define the identity morphisms in
C x D by

id(c,qy = (id,idg)  for all (¢, d) € Obj(€C x D).
Indeed,
(f,9) o (ide,idg) = (f oide, g oida) = (£, 9),
and
(ide, idar) o (f, 9) = (ide of, ida 0g) = (f, 9),

for every morphism (f, g) € Homeyn((c,d), (¢, d")). Associativity of the com-
position of € x D follows directly from its component-wise definition and the
associativity of compositions of € and D.

Next, we construct the functors pe : €xD — Cand pp : CxD — D. Define
pe by assigning:

e to each object (¢, d) of € x D, the object ¢ of C;

e to each morphism (f,g) € Homexn((c,d), (¢/,d’)), the morphism f in C.

To verify that pe is indeed a functor, we will check that it satisfies conditions
(i) and (ii) of Definition 2.1.1:

(i) For any object (c,d) of € x D,
pe(id(,a)) = pe(ide, idg) = id. .
(ii) For any composable morphisms (f,g) and (f’,¢’) as above,
pe((f,9") o (f.9)) =pe(f' o f g og)=fof=pe(f.g)ope(f g)

This concludes the verification that pe is a functor. Similarly, define pp by
assigning:

e to each object (¢, d) of € x D, the object d of D;
e to each morphism (f,¢) € Homeyxn((c, d), (¢/,d’)), the morphism g in D.
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The verification that pp is a functor is very similar to the one for pe.

To complete this example, we verify that the triple (C x D, pe, pp) satisfies
the universal property of the product in Cats (see Definition 1.2.9). Namely,
we will verify that, if X is a small category for which there exist functors
Feo: X — Cand Fp : X — D, then there exists a unique functor F' : X — CxD
such that

peo F'=Fe and ppoF = Fp.
Define F' by assigning:

e to each object z of X, the object (Fe(z), Fp(z)) of € x D;
e to each morphism f € Homy(z,y), the morphism (Fe(f), Fn(f)).
The fact that pe o F' = Fe and pp o F' = Fyp follows directly from the definition

of F'. Thus, we are left to verify that F' is indeed a functor. To do that, we
will check that it satisfies conditions (i) and (ii) of Definition 2.1.1. Indeed:

(i) For each object x of X, using the fact that Fe and Fyp are functors and
the form of the identity morphism of € x D given above, we have:

F(ldx) = (F@(ldm),FDde)) = (ldFQ(JK)’ldFD(LI:)) = id(F@ (z),Fp(x)) ldF

(ii) To verify the second condition, let z,y, z be objects of X, f € Homy(z,y)
and g € Homx(y, z). Using the definition of F', the fact that Fi and Fip
are functors, and the form of the composition on € x D, we have:

F(go f) = (Fe(go f), Fn(go f))
= (Fe(g) o Fe(f), Fn(g) o Fn(f))
= (Fe(g), Fn(g)) o (Fe(f), Fn(f))
= F(g) o F(f).
This concludes the proof that the triple (€ x D, pe, pp) satisfies the defining

conditions of the product in Cats. Thus, we conclude that (€ x D, pe, pp) is
the product of the categories € and D.

We close this section by proving that products define a functor satisfying
certain properties. These properties will become axioms of monoidal categories
in the next section.

Proposition 3.3.3. Let C be a category.
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(a) If € has finite products, then there exists a functor IT : € x € — € induced
by these products.

(b) There exists a natural isomorphism « : [T o (IT X ide) = I o (ide xIT).

(c) If € has a terminal object ¥, then there exist natural isomorphisms
{Ae ¥ xc—ec|eceObj(C)} and {o.:cxW —c|ceObjC)}.
(d) For each quadruple of objects a, b, ¢, d of €, we have

Qg bexd © Xaxb,e,d = (ida ><Oéb,c,cl) O Ug bxc,d © (aa,b,c X 1dd)
(e) For each pair of objects a,b of €, we have

(ida X/\b) O Qg p — (Qa X ldb)

Proof. (a) We begin by defining II. Since the category € is assumed to have
finite products, for any object (a,b) of € x €, the product of a and b in C is
a triple (a x b, pa, pp) (see Definition 1.2.9). We will assign II(a,b) := a xb.

Now, consider a morphism (f : a — d’, g : b = ') of €xC. The product
II(f, g) will be defined as the unique morphism f x g : a xb — a’ x b’ such
that po(fxg) = (fop,) and pyo(fxg) = (gopy). The well-definiteness
(existence and uniqueness) of f x g follows from the universal property of
products (see Definition 1.2.9).

Now, we will verify that II, as defined above, is a functor. That is, we
will verify that II satisfies conditions (i) and (ii) of Definition 2.1.1:

(i) Given an object (a,b) of €xC, we must check that II(id(4s)) = idr(a)-
Since idpi(ep) = idaxs and idp) = (ide,1ds), this is equivalent to the
equations:

Pa ©idaxpy = po = idgop, and  pyoidaxy = pp = idy opy.

(ii) Given two morphisms of € x C, namely (f,g) : (a,b) — (a/,') and
(f'.q): (d, V) — (a”, V"), we must check that

I((f,g') o (f,9)) =TL(f".g") o 1I(f, 9).
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Since (f',¢")o(f,g9) = (f'of, g'og), this is equivalent to the equations:

Par o ((f' x g') o (f x g)) = (par o (f' x ¢')) o (f x g)
= (fopa)o(f xg)
(

fro(paro(f xg))
= f"o(fopa)
= (f"of)opa
and
pyr o ((f' < g") o (fxg)) = (peo(f xg))o(fxg)
= (g opy)o(f xg)
=g o(pyo(fxg)
=g o(gom)
= (9" 2 g) o pe.
This completes the proof that II is a functor.
(b) We want to construct a natural isomorphism
a:ITo (Il x ide) = T o (ide xII).
Since
(ITo (IT x id))(a, b,c) =1I((a x b),c) = (a x b) X ¢
and
(ITo (id xIT))(a, b, c) = (a, (b x ¢)) = a x (b X ¢),
for every triple of objects a, b, ¢ of €, this is equivalent to constructing a
family of isomorphisms

{ape:(@xb)xc—ax(bxc)|a,b,ceObjC)}

that satisfies naturality conditions.

Fix a triple of objects a, b, ¢ € Obj(€). Using the universal property of
the product a x (b x ¢), the morphism «, . is uniquely determined by a
pair of morphisms:

fao:(axb)xc—a and fr.:(axb) xec—>bxec

Similarly, using the universal property of the product b x ¢, the morphism
[ 1s uniquely determined by a pair of morphisms

fo:(axb)xec—b and f.:(axb)xc—ec.
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Choose f, = (Pa © Paxb)s Jo = (Po © Paxp) and f. = p.. Thus, we will define
Qape t0 be the unique morphism in Home((a x b) X ¢, a x (b X ¢)) such
that

Pa © Cgpec = fa = Pa © Paxb and DPoxec © Qgpe = fb,ca

where fj . is the unique morphism in Home((a x b) X ¢, b x ¢) such that

pbofb,c:fb:pbopaxb and pcofb,c:fc:pc~

To show that a,y . is an isomorphism, we will construct its inverse. Let
Qi p be the unique morphism in Home(a x (b x ¢), (a x b) x ¢) such that:

(pa o paxb) O Ugbec = Pa, (pb o paxb) O Ugbe = Pb O Pobxe,

Pec © Qg e = Pec © Pbxe-

By construction, ay p.0&q . is @ morphism in Home(ax (bxc), ax (bxc))
such that

Pa © (aa,b,c o da,b,c) - (pa o aa,b,c) o da,b,c - (pa o paxb) o da,b,c = Pa,
(pb o pbxc) o (aa,b,c o da,b,c) - (pb o paxb) o &a,b,c = Db © Pbxe;,

(pc o pbxc) © (aa,b,c o &a,b,c) = Pc© &a,b,c = Pc © Pbxec-

Since

DPa © ida><(b><c) = Da; (pb © pbxc) © ida><(b><c) = Db © Pbxc,
(pc o pb><c> o ida><(b><c) = DPc © Pvxe

the universal property of a x (b x ¢) implies that a0 Qapec = idax(bxe)-
Similarly, we can verify that dqpec © dape = id@xp)xe. This implies that
Qg pc 18 an isomorphism.

Finally, to show that a satisfies the naturality conditions, consider three
morphisms, f:a—d,g:b— b and h:c— ¢, in €. We need to verify
that

(f x(gxh))oagpe=awpeo((fXxg)xh).
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Notice that
Pa’ © ((f X (g X h)) © O‘a,b,C) = (pa’ © (f X (9 X h))) © Qqb,c

= (pa’ o aa’,b’,c’) o ((f X g) X h’)
= Par © (awpe © ((f X g) X h)).

Similarly, we can verify that

(P 0 porscer) © ((f X (g X h)) o upe)
= (P © Pyxe) © (awpr e © ((f X g) X h))

and

(Per 0 pyxer) o ((f % (g X h)) © Qape)
= (per 0 Pyxer) © (e ((f X g) x 1))

The constructions of a and of the product of morphisms in € via universal
properties, and these identities imply that

(f x(gxh))oagpe=0awpeo((fXxg)xh).

This shows that « is a natural transformation and concludes the proof of
this part.

(c) We want to construct natural isomorphisms A and p. To do that, let
¢ be an object of C, let 1 be a terminal object of C, and recall from
Definition 1.2.9 that the product of the objects ¢ and 1 in € is a triple
(¢ x 1, pe, p1), where ¢x 1 is an object of Cand p. : ¢x1 — ¢, p1 : ¢x1 — 1
are morphisms of €. We will define A\, = p. for all ¢ € Obj(C).

To show that A, is an isomorphism for every object ¢ of G, we will use
the fact that 1 is a terminal object of C. In fact, fix an object ¢ € Obj(C),
and recall from Definition 1.2.4 that, for each object x of C, there exists a
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unique morphism ¢, : * — 1; in particular, for ¢ and for ¢ x 1. This means
that there exist morphisms ¢, : ¢ — 1 and id, : ¢ — ¢. Thus, the universal
property that (¢ x 1,p., p1) satisfies (see Definition 1.2.9) implies that,
there exists a unique morphism g, : ¢ — ¢ x 1 such that p. o p. = id, and
p1 © pe = t.. This first equation implies that

/\colch:pco,uc:idc-
It also implies that . o A, is a morphism (¢ x 1) — (¢ x 1) such that

pco(ﬂco)\c) :pco(ﬂcopc) = (pcoﬂc)opc:idcopc:pc

and p1 o (e o A\.) = tex1. Since id.1 is also a morphism (¢ x 1) — (¢ x 1)
that satisfies

Dc © idc><1 = Pe and p1o idc><1 = texa,

the universal property of (¢ X 1, p., p1) implies that p. o A, = id.x1. This
shows that \.o u. = id. and p. o A, = id.x1, and as a consequence, that
A is an isomorphism.

Now, we will verify that A = {)\, | p € Obj(€)} is a natural transfor-
mation, that is, that it the satisfies naturality conditions. To do that, let
f ¢ — ¢ be amorphism of C. From the definition of A and the definition
of the product of morphisms, we see that

)\c’ 0] <1d1 Xf) = D¢ © <1d1 Xf) = f O Pe = f e} )‘c-

This shows that A is a natural transformation, and completes the proof
that A is a natural isomorphism. The construction of ¢ and the proof that
o0 is a natural isomorphism are completely analogous.

We want to prove that

Qg bexd © Cagxbe,d = (ida Xab,c,d) O Qg bxe,d © (aa,b,c X 1dd)

Since they are morphisms in Home(((axb) x¢)xd, ax (bx (c¢xd))), we will
use the universal properties of products and compare their projections. In
fact, using the definition of « (see item (b)) and of products of morphisms
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(see item (a)), we obtain the following identities:

Pa © Cgpexd © Aaxb,c,d
= Pa © Paxb © P(axb)xc
= Pa © (ida Xab,qd) O Ug bxe,d © (aa,b,c X idd)>
Db © Pox(exd) © Xab,exd © Xaxb,c,d
= Db © Paxb © P(axb)xc
= Db © Pox(exd) © (ida XWpcd) © Qgpxed © (Aape X idg),
Dc © Pexd © Pox(cxd) © Xabexd © Aaxb,c,d
= Pc © P(axb)xc
= Pc © Pexd © Pox(cxd) © (ida XOéb,c,d) O Qg bxe,d © (aa,b,c X idd),
Pd © Pexd © Pox(exd) © Aab,exd © Xaxb,c,d
= Da
= Pd © Pexd © Pox(exd) © (ida XOéb,c,d) O Qg bxe,d © (Oéa,b,c X idd),
Since these projections are equal, the universal property of a x (bx (¢x d))
implies that aqpexd © Qaxbe,a and (Idg XA c.d) © Qg pxed © (Qgpe X idg) are

both equal to the unique morphism in ((a x b) x ¢) xd = a X (b x (¢ x d))
that satisfy these identities. This shows that

Qg bexd © Xgxb,e,d — (ida XOCb,c,d) O Qg bxe,d © (aa,b,c X ldd)
Let a, b, ¢ be a triple of objects of €. We want to prove that
(idg XAp) © Qg pe = 0q X 1dy -

To do that, recall from the definition of the product of morphisms in € (see
item (a)) that g, X id, is the unique morphism in Home((a X 1) x b, a x b)
such that

Pa © (00 X idp) = 04 0 Pax1  and  p, 0 (04 X idp) = idy ops.
Thus, to show that (id, XAp) © Agpe = 04 X idp is equivalent to show that

Pa © ((ida X Ap) © aa,b,0> = 0Oq © Pax1

and

by © ((lda X)‘b) o aa,b,c) = 1db OPp.
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The first identity follows from the definition of the product of morphisms
in C, the definition of «v (see item (b)) and the definition of g (see item (c)):
Pa© ((ida XAp) 0 @a15) = (Pa © (ida XAp)) © a1 p

- (ida Opa) O g 1b

= Pa ©Cg1p

= Da © Pax1

= Oa © Pax1-
Similarly, the second identity follows from the definition of the product
of morphisms in €, the definition of « (see item (b)) and the definition of
A (see item (c)):
Py 0 (idg XAp)) © a1

Ap © p1xb) O Qg,1,b

po o ((idy XAp) 0 ag1p) = (
= (
= (pb S p1><b> O Qgb
= Db

Since (id, X Ap) 0y, 1, satisfies these identities, we conclude that it is equal
to o X idy. O

3.4. MoNoOIDAL CATEGORIES

Monoidal categories are categories with a structure that mimics that of
products (as seen in the previous section) and tensor products on vector spaces.
In this section, we will define monoidal categories and provide several examples
that illustrate their abstract definition.

Definition 3.4.1. A category C is said to be monoidal when it is equipped
with a functor ® : € x € — € satistying the following conditions:

(i) There is a natural isomorphism
{tgy. (@Y ®@z—=2(yR=2)|z,y,2€ Obj(C)}.
(ii) There is an object 1 € Obj(€) such that, there exist natural isomorphisms
{M:1®x—2|2zeO0bj(C)} and {o,:2®1—x|zecObjC)}.
(iii) For every quadruple (a,b, ¢, d) of objects of €, we have

(ida ®ab,c,d) O Ug,b®c,d © (aa,b,c X ldd) = Qg ,b,cd © Xa®b,c,d-
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((a®b)®c)®dm (a®b)®(c®d)

Oapc ®ide Jaa,b,cm v@l)®y — s ®1ey)
(a®@(b®c)®d a® (bR (c®d)) &@N %@A
a® ((b®c)®d)

FIGURE 3.4.1. Diagrams of pentagon and triangle identities

(iv) For every pair (z,y) of objects of €, we have
(id, ®Ay) 0 g1y = 0, ®1id, .

In this case, the functor ® is called tensor product, the object 1 is called
identity object, the equality in item (iii) is called pentagon identity, and the
one in item (iv) is called triangle identity (see Figure 3.4.1).

To illustrate the abstract definition above, we will consider a few concrete
examples of categories with a monoidal structure and a category with no
monoidal structure. We begin with the smallest monoidal category possible.

Example 3.4.2. Consider the smallest category possible, that is, the category
C with one object, Obj(€) = {e}, one morphism Mor(C) = {id.}, and trivial
composition, id, oid, = id,. In order to introduce a monoidal structure on
this category, we must define a tensor functor.

To that end, begin by noticing that the category € x € also has one object,
Obj(€x€) = {(e, )}, and one morphism, Mor(Cx C) = {id(s )} = {(ide,ids)}
(see Example 3.3.2). Hence, there exists only one functor ® : € x € — C,
namely, the functor given by

exe=e and id,®id, =1id,.

In order to show that (€, ®) is a monoidal category, we will verify that the
conditions (i)-(iv) are satisfied.

(i) Since e is the only object of €, the only triple of objects of C is (e, e, e).
Hence, in this case, the natural transformation a consists of a morphism,
(e o.o. Moreover, since @ @ e = o, then

(eRe)Re—exe—e and eR(eRe)=eRe—=oe.
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Thus, in this case, we can choose (e ¢ ¢ = ide to be the isomorphism
Qooe: (R O) RO >0 (0R 0).

Since Obj(C) = {e}, then ¥ must be o. Moreover, the natural transfor-
mation A will consist of a unique morphism,

Ae:lRe— 0

and similarly, the natural transformation ¢ will consist of a unique mor-
phism,

O :®0R1 — e,
Now, since 1 ® e = @ ® @ = o, we can choose the morphism A, to be id,,
which is an isomorphism

de =Ae: 1R e — 0.

Similarly, since e ® 1 = e ® ¢ = o, we can also choose the morphism p,
to be id,, which is an isomorphism

ide = 0s: @R 1 — 0.

Since Obj(€) = {e}, then the only quadruple of objects of C is (e, e e).
Moreover, since @ @ @ = o and e+ = id, then the left-hand side of the
pentagon identity is

|

°
®
°

= e@.
And the right-hand side of the pentagon identity is also
(g 00 O ao,o,o(((. ® .) ® .> ® .) - ao,o,o((. ® .) ® (' ® .))
1D
—eR (e®e)
—eoR e
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(iv) Since o is the only object of €, then the only pair of objects of C is (e, e).
Moreover, since 1 = @ and A\¢ = (e 00 = 0o = ids, then the left-hand side
of the triangle identity is

(ide ®Ne) 0 Ve ee((® @ @) @ @) = (ide RNs) (0 ® (e ® ®))
E 5 )

= @.
And the right-hand side of the triangle identity is also

060 Qeeo((0RO) R 0) = p,(0® (e 0))
= 0e(0®@ o)

This shows that the pair (€, ®) is indeed a monoidal category.

As mentioned in the previous section, products also induce monoidal struc-
tures in the category of small categories.

Example 3.4.3. Recall from Proposition 3.3.3 that products induce functors
on categories that admit finite products. Moreover, this functor satisfies con-
ditions (i)-(iv) of Definition 3.4.1. This means that any category that admits
finite products admits a monoidal structure. Similarly, one can verify that any
category that admits finite coproducts also admits a monoidal structure.

As we mentioned in the beginning of this section, the functor ® in a monoidal
category is a generalization of the tensor product of vector spaces. In the next
example, we verify that, in fact, the usual tensor product endows the category
of vector spaces with a monoidal structure.

Example 3.4.4. Let k be a field and let C denote the category of vector
spaces over k. That is, the objects of C are the vector spaces over k, the
morphisms of € are the linear transformations between these vector spaces,
and the composition is the usual composition of functions (see Example 1.5.8).

Now, let ® be the functor that assigns the usual tensor product V @, W to
a pair of k-vector spaces (V, W) and assigns the linear transformation

(Th @ T3) = Vi @k Vo = Wi @k Wh,
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given by

(Ty ® T3) (Z Aiv1; ® Uzz> = Z i T (v1,) @ To(vay),

=1

to a pair of linear transformations (77 : Vi — Wy, Ty : Vo — Ws). In order to
show that (C,®) is a monoidal category, we will verify that the conditions

(i)-(iv) are satisfied.

(i) Recall (for instance, from [KM97, §4.2.2]) that, for each triple (V;, Va, V3)
of k-vector spaces, there is a linear isomorphism

CAATAZI (vl ® V2) @Vs—=V® (‘/2 & Vfg),
given explicitly by

OV, Vi, Vs (ZA V1, @ va;) ®U31> Z)\ V1, @ (V2 ® v3,4).

=1

To verify that « is a natural transformation, let (W, Wy, W3) be another
triple of k-vector spaces and Ty : Vi3 — Wy, Ty - Vo — Wy, T3 : V3 — W3
be a triple of linear transformations. The naturality condition is satisfied
by a because

Ty ® (Tr ®T3) (QVl,Vg,Vg <Z Ai(vi1 ® ve,;) ® U3,i>>

i=1

i=1

=T ® (T ®Ts) (Z Aivig1 @ (va; ® U3,z‘)>

= Z AiT1(vi1) @ (Ta(va;) @ Ts(vs,))

is equal to

QW W, Ws ((Tl ®Ty) @ T3 <Z Ai(vig ® v23) ® U3,i)>

i=1

= QW Wa,Ws (Z Ai(T(vig) @ Ta(vg,)) @ T3(U3,i)>

=1

= Z AT (via) @ (Ta(va,;) ® Ts(vsy)),
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for all n > 0, >\1,...,)\n S ]k, Vi1y--+,V1n € ‘/1, V21y---,V2n € V5 and
U31,...,VUs, € V3. This shows that o is in fact a natural isomorphism.

Define the identity object 1 as the 1-dimensional vector space k. Then,
recall (for instance, from [KM97, §4.1.7]) that, for each k-vector space V,
there is a linear isomorphism Ay : k ®, V' — V', explicitly given by

>\V (i 4 &® Ui) = i ;0;.
i=1 i=1

To verify that A is also a natural transformation, let W be another k-
vector space and T : V' — W be a linear transformation. The naturality
condition is satisfied by A because

T <)\v (i ;& Uz)) =T (i Oéivz) = i ;T (v;)

is equal to
Aw (id]k QT <Z a; @ Uz)) = A\w (Z a; @ T(Uz')) = Z ;T (v;),
i=1 i=1 i=1
forallmn >0, aq,...,a, € k and vq,...,v, € V. This shows that \ is a

natural isomorphism.
Next, recall that, for each k-vector space V', there is also a linear iso-
morphism gy : V ®, k — V', explicitly given by

ov (Z v; @ Oq) = Z o, ;.
i=1

=1

The verification that p is a natural transformation is very similar to the
one shown above for \.

Let V1, V5, V3,V be four k-vector spaces and v € Vi, vy € V5, v3 € V3 and
vy € V4 be vectors in these vector spaces. In this case, the left side of the
pentagon inequality is

(idv; ®avy,v314) © vy vawvs,v; © (v 1svs @ idy, ) (V1 @ v2) @ v3) ® 4)
= (idy, ®avy,v3,11) © Avi veevs, v, (V1 ® (V2 ® V3)) ® vy)

= (idy; ®@ag v5,1;) (01 @ ((V2 ®@ v3) @ v4))
=11 ® (v2 @ (V3 ® vy)).
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And the right side of the pentagon identity is

vy Vo, vsevs (Qvieve,va,va (11 @ v2) ® v3) ® vy))
= av, v, vev: (V1 ® v2) @ (Vs ® v4))
=1 ® (V2 ® (v3 @ vyg)).
Since these two sides are equal, we conclude that « satisfies the pentagon
identity.

(iv) Let Vi, V5 be a pair of k-vector spaces, let v; € V; and vy € V5 be vectors,
and let k£ € k be a scalar. Since the identity object 1 is the 1-dimensional
vector space k, the left side of the triangle identity is

(idv, ®Avs) (avy v, (V1 @ k) ® 2)) = (idy, @A) (01 @ (k @ 12))
= v ® (kvy)
= k(v; ® vy).
And the right side of the right side of the triangle identity is
ov, ®idy, (11 ® k) @ vg) = (kvy) ® ve = k(v ® vy).
Since these two sides are equal, we conclude that the triangle identity is

also satisfied.

This shows that conditions (i)-(iv) are satisfied, and hence that the usual tensor
product endows the category of vector spaces with a monoidal structure.

To close this section we will construct a category which admits no monoidal
structure. To help us do that, we will prove the following general result.

Proposition 3.4.5. Let (€, ®) be a monoidal category. If we denote its iden-
tity object by 1, then Home(1,1) is an abelian monoid with respect to the
composition of €.

Proof. We begin by showing that (Home(1,1), o) is a monoid. Indeed, since o
is the composition of the category C, it is an associative operation. Moreover,
since C is a category, there exists a morphism, id; € Home(1, 1), which satisfies

idijof =f and foidy=f for all f € Home(1,1).
This shows that (Home(1,1), o) is a monoid.

Next, we will use the fact that A\; = p; to show that this monoid is abelian.
(The proof of this fact will be given in Lemma 3.4.7.) Since A is a natural



106 TIAGO MACEDO

isomorphism, for each pair of morphisms f, g € Home(1, 1), we have
fold=Mo(idi®f) and goA; =)o (id; ®g),
or equivalently,
f=Mo(idi®f) oAt and g=Xo(idy®g) oA’
Similarly, since p is also a natural isomorphism, we also have
f=oo(f®idi)oo;" and g=op10(g®idi)oo;".
Hence, using the fact that A\; = p1, we obtain that
fog=(o10(f®idi)opr") o (M o(ids ®g) o A')
=0o(f®@g)oA"
=Mo(f®g)oo’
= (A1 o (idy ®g) o A\;") o (010 (f ®id1) 0 07")
=go f. O

Using the result above, we can now easily construct a category which admits
no monoidal structure.

Example 3.4.6. Let S5 denote the group of permutations of a set with three
elements. Recall that this is a non-abelian group and, in particular, a non-
abelian monoid. If we consider a category € with one object, Obj(C) = {e}, six
morphisms, Mor(€) = Home(e, ®) = S3, and composition induced by the com-
position of permutations in S3, according to Proposition 3.4.5, this category
admits no monoidal structure.

To formally complete the proof of Proposition 3.4.5, we will prove the fol-
lowing technical result.

Lemma 3.4.7. Let (C,®) be a monoidal category. If we denote by 1 its
identity object and by A, o the natural isomorphisms

{M:1®x—2z|xeObj(C)} and {g,:2®1—x]|zec0bjC)},
then we have Ay = 0;.

Proof. We will begin by proving that
idl X ()\x X ldy) = (ldl ®)\x®y) o <1d1 ®a1,x,y)
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for every pair of objects z,y of €. In fact, using the pentagon identity for
a=b=1,c=xand d = y, the triangle identity and the naturality of «, we
see that

(idy ®Apgy) © (id1 @01 4y)
= (id1 ®Asgy) © 011,00y © Mre1ey © (O1,1,, ®idy) " 0 1 18y
= (01 ®idzgy) © Cg12y 0 (112 @idy) " 00710,
= 14,0 ((01®id,) ®idy) o (a11. ® idy)f1 o a;,11®az,y
= 1.0, 0 ((Id1 ®A,) ®idy) 0 07 164,
=id; ® (A, ®1id,).

Now, we will use the identity proved in the previous paragraph to prove
that A\, ® idy, = Aygy © a1, for every pair of objects x,y of C. In fact, using
the naturality of A and a, we see that

)\CC X 1dy = )\x®y o <1d1 & ()\x ® ldy)) © )\(_1}83:)@3/
- )\x®y % <1d1 @ ()‘x®y © al,w,y)) © Aagz)®y

= Az@y © M1z

Now, we will use the identity A\, ® id, = A;gy © @14, to show that
A ®idy = 01 ®id; .
In fact, if we choose x = y = 1, the identity A\, ® id, = A\, © a1 5, becomes
M ®id; = Mgroai1-

Using the naturality of A\, we obtain that \;g; = idy ® A1, which implies that
the identity above becomes

M ®idy = (idy ®A1) o ag11.

Now, using the triangular identity (Definition 3.4.1 (iv)) with z =y = 1, we
obtain that

)\W®id1:Q1®id1.
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To conclude this proof, we will use the identity \; ® id; = ¢; ® id; to show
that Ay = 01. In fact, using the naturality of p, we see that

01 = A1 0 0101 © (M ®idy) "
= A1 0 0191 © (01 ®idy) ™"

= A1 00191 © Qfé1
= A1 O

3.5. BRAIDED AND SYMMETRIC MONOIDAL CATEGORIES

Braided and symmetric categories are monoidal categories also equipped
with a structure that generalizes the commutativity for tensor products. For-
mally, this structure is a natural isomorphism that identifies objects that differ
by the order in which they are tensored. In this section, we will present the ab-
stract definitions of braided and symmetric monoidal categories and illustrate
these definitions with concrete examples.

Definition 3.5.1. A monoidal category (C,®) is said to be braided when it
is equipped with a natural isomorphism

{0z 2@y —=y®@a|z,yeObjC)}
that satisfies the following identities:

(1> Apc,a © Oa,bc © Nabe = (ldb ®0a,c) O Opg,c © (Ua,b ® idc)a
(il) apeq o Ub_@}qa 0 Agpe = (idy ®0,,) © Mg © (‘71;; ®id,).

In this case, the natural isomorphism o is called braiding and the identities
(i) and (ii) are called hezagon identities (see Figure 3.5.1). Moreover, the
category C is said to be symmetric when o, , 0 0,, = id,g, for every pair of
objects x,y of C.

To illustrate the abstract definition above, we will consider some concrete
examples. We begin with the smallest monoidal category.

Example 3.5.2. Recall from Example 3.4.2 that the smallest category, the
category € with one object, Obj(€C) = {e}, one morphism, Mor(C) = {id.},
and composition given by id, oid, = id,, admits a monoidal structure, explic-
itly given by

e®e—=e and id,®id, = id,.
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—1
Oy

a®(b®c)@f(b®c)®a a®(b®c)&a(b®c)®a
Oéa,b,/ \C/Vb,c,a Oéa,b,/ \Jjb,c,a
(a@b)®c b® (c®a) (a®@b)®c b® (c®a)
aal,\%idc id, %M a;a\%idc idy 7/0—;;
(b®a)®cmb®(a®c) (b®a)®cmb®(a®c)

F1cUure 3.5.1. Diagrams of hexagon identities

Since this category has only one object and one morphism, the identity is a
braiding on it. In fact, ids is an isomorphism e ® e — e © e. Moreover, since
id, 0ids = id,, this braided monoidal category is also symmetric.

In the next example, we verify that the monoidal category of vector spaces
is also braided and symmetric.

Example 3.5.3. Let k be a field and € be the category of vector spaces over k.
Recall from Example 3.4.4 that the usual tensor product endows this category
with a monoidal structure. We will show that there exists also a symmetric
braiding on €

In fact, recall (for instance, from [KM97, §4.2.3]) that, for every pair of k-
vector spaces V, W, there exists a linear isomorphism oy : VW — WV,
explicitly given by

i=1

We will verify that the family {oyw | V,W € Obj(€)} defines a natural trans-
formation and satisfies the hexagon identities.

To verify that o is a natural transformation, let 7: V. — V', S : W — W’
be a pair of linear transformations. We want to check that

(S@T) OC0yw = Oy w'© (T® S)



110 TIAGO MACEDO

In fact, observe that

=1

—Z)\ (w;) @ T'(v;))

= ov'w! (Z)\ ’UZ ®S wz)))

:JV/’W/<T®S (ZA v; @ w; )),

for all Ay,..., A\, €k, v1,...,v, € V and wy,...,w, € W. This shows that o
defines a natural transformation, and thus, a natural isomorphism.

Next, we will verify that o satisfies the hexagon identities. To do that, fix a
triple of k-vector spaces, V, W, U. Then, identity (i) in Definition 3.5.1 follows
from the fact that

Qp ca (Ua, bRc (Oéa,b,c((v ® w) & u))) = Opca (Ua, b®c(U & (UJ ® U)))
= pea((w @ u) @)
=w® (u®v)

is equal to

(idy ®04c) (A ae ((0ap @ ide) (v @ w) @ u))) = (dp R4 ) (W ac((W @ V) @ w))
= (idy ®@04c) (W @ (v ® u))
=w® (u®v),

forallv € V, w € W and w € U. Similarly, identity (ii) in Definition 3.5.1
follows from the fact that

Weia (Thea (Qape(VOW) @ U))) = Qe (Th, (v ® (w @ w)))
= Wpea((w®u) @0)
=w® (uR)



NOTES ON CATEGORY THEORY 111

is equal to
(idy ®0;§) (ozha’c ((Jb_; ®id.)((v ® w) ® u)))
= (idy ®0 ) (W ac((w @ v) @ u))
= (idy @0, ) (w ® (v @ u))
=w® (u®wv),
foralveV,weW and u e U.

We close this section by constructing an example of a monoidal category
that is not braided.

Example 3.5.4. To construct a monoidal category that is not braided, we
will begin by constructing a small non-abelian monoid. In fact, consider the
set M = {e,a,b}, endowed with the operation - : M x M — M defined by

ec-e=e, e-a=a, e-b=b,
a-e=a, a-a=a, a-b=a,
b-e=b, b-a=b, b-b=0.

One can see that e is the identity element in (M,-), and one can explicitly
check that the operation - is associative. This means that (), -) is a monoid.

Now, consider the category € with three objects, Obj(€) = M, three mor-
phisms, Mor(€) = {id,, id,, iy}, and the obvious composition,

id, oid, =id,, 1id,o0id, =id, and idyoid, =id,.
We can endow the category € with a monoidal structure by defining
ry:=z-y and id,®id, =id,, for all z,y € Obj(C).
In fact, the identity object 1 is e and the natural isomorphisms «, A, ¢ are all
equal to the identity one (see Example 3.1.2).
Now, since a®b =a-b=a,b®a =0b-a = b, and there exists no morphisms
in Home(a, b), the monoidal category (€, ®) cannot be braided.



Part 1V

Stratifications

In this part of these notes, we introduce the notion of stratification of abelian
categories. This concept provides a way to decompose an abelian category
into simpler layers, each of which interacts with the others in a controlled
manner. It generalizes familiar decompositions from algebraic geometry and
representation theory, such as filtrations by support or by weight, to an ab-
stract categorical framework.

To define stratifications rigorously, we must first develop a few key notions.
We begin by recalling the concept of subcategory, the categorical analogue of
subsets, subspaces and subgroups. Among these, certain subcategories known
as Serre subcategories play a central role in abelian settings: they are precisely
those for which one can construct meaningful quotient categories. The corre-
sponding quotient construction, called Serre quotient, allows us to collapse a
Serre subcategory while preserving exactness. In turn, this leads naturally to
the concept of recollement, which formalizes how an abelian category can be
reconstructed from a subcategory and its quotient.

Each of these constructions contributes to the definition of stratification: a
stratification of an abelian category is, informally, a layered structure built
from a finite sequence of recollements indexed by a poset. Hence, the goal of
this part is thus twofold: to build the categorical tools necessary for defining
stratifications, and to illustrate how these tools mirror well-known construc-
tions in algebraic geometry and homological algebra.

4.1. SUBCATEGORIES

Just as we study subspaces of vector spaces and subgroups of groups, we
can also consider subcategories of a given category. A subcategory consists of a
selection of objects and morphisms from the ambient category that themselves
form a category under the same composition law. In this section, we define

subcategories and illustrate this definition with some basic examples.
112
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Definition 4.1.1 (subcategory). Given a category C, a subcategory D of C
consists of a collection of objects Obj(D) C Obj(€) and a collection of mor-
phisms Mor(D) € Mor(C) satisfying the following conditions:

(i) For every object d € Obj(D), the identity morphism idy is in Mor(D),

(ii) For every pair of morphisms, f,g € Mor(D), such that f € Home(a,b)
and g € Home(b, ¢), the objects a,b, ¢ are in Obj(D) and the morphism
(g oe f) is in Mor(D).

In this case, one denotes Mor(D) N Home(a, b) by Homp(a, b), for every pair
of objects a,b € Obj(D). Moreover, one says that the subcategory D of € is
full when Homp(a,b) = Home(a, b), for every pair of objects a,b € Obj(D).

Notice that, if D is a subcategory of a category C, then (Obj(D), Mor(D), oe)
is also a category. This means that this definition captures the intuitive idea
that a subcategory is a substructure that respects the categorical structure of
the ambient category. The next examples illustrate this definition, beginning
with the simplest cases.

Example 4.1.2. Given a category C, the category C is a subcategory of itself.
At the other extreme, the empty subcategory is the one with no objects and
no morphisms.

While the example above is simple, it establishes that subcategories exist
in abundance. In the next example, we will construct full subcategories of a
category.

Example 4.1.3. Given a category C, for every choice of a subset Obj(D) of
Obj(C), if we choose Homp(a,b) to be Home(a,b) for every pair of objects
a,b € Obj(D), then we obtain a full subcategory of C.

The examples above are general, but examining a small enough category to
list all the possibilities will also help to understand the definition of subcate-
gories. We close this section with one such example. It shows that even for a
small category, there can be multiple subcategories, some full and some not.

Example 4.1.4. Consider a category € with two objects, Obj(C) = {a, b},
and three morphisms, Mor(C) = {id,, f,id,}, where {f} = Home(a,b). The
subcategories of C are:

e The empty subcategory,
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e The subcategory with Obj(D) = {a} and Mor(D) = {id,},

e The subcategory with Obj(D) = {b} and Mor(D) = {id,},

e The subcategory with Obj(D) = {a,b} and Mor(D) = {id,,ids},
e The entire category C.

Notice that, if we chose Obj(D) = {a} and Mor(D) = {id,, f}, then we
would not obtain a subcategory, because f € Home(a,b) N Mor(D) and b ¢
Obj(D). Using similar arguments we can show that no other choice of Obj(D)
and Mor(D) would form a subcategory of C.

The notion of subcategory provides the basic setting for all subsequent con-
structions in this part of these notes, including Serre subcategories, quotient
categories, and recollements.

4.2. SERRE SUBCATEGORIES

In the study of abelian categories, it is natural to consider subcategories that
are well-behaved with respect to the abelian structure. Among these, Serre
subcategories play a distinguished role: they are precisely the subcategories
that admit a quotient construction producing another abelian category. In this
section, we define Serre subcategories and present a few examples. Intuitively,
a Serre subcategory is one that is closed under taking subobjects, quotients,
and extensions.

Definition 4.2.1 (Serre subcategory). Given an abelian category A, a full
subcategory 8 of A is called a Serre subcategory when Obj(8) # @) and, for
every short exact sequence 0 — a — b — ¢ — 0 in A, we have: b € Obj(8) if
and only if a € Obj(8) and ¢ € Obj(8).

This definition has a clear two-out-of-three flavour: the middle term of a
short exact sequence is an object of & precisely when the outer terms are. To
understand this condition better, we begin with the most basic examples.

Example 4.2.2. For every abelian category A, the zero subcategory (that
is, the full subcategory 8 for which Obj(8) = {0}) and the whole category
(8 = A) are Serre subcategories of A.

While the example above is simple, it establishes that every abelian category
possesses at least one Serre subcategory. The first non-trivial examples arise
from vector spaces.
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Example 4.2.3. Let k be a field and A be the abelian category of k-vector
spaces (see Example 1.8.2). Then, let 8§ be the full subcategory of A such that
Obj(8) consists of the finite-dimensional k-vector spaces. To show that § is
a Serre subcategory, notice that, for every short exact sequence of k-vector
spaces 0 - W — V — U — 0, we have that: V is finite-dimensional if
and only if W and U are finite-dimensional. In fact, this follows from the
additivity of dimensions (also known as Rank-Nullity Theorem, in this case),
dimV =dimW + dimU.

This example shows how Serre subcategories can capture size constraints.
Similar constructions appear throughout algebraic geometry, where support
conditions play an analogous role.

Example 4.2.4. Let X be a Noetherian scheme and let A = Coh(X) be
the category of coherent sheaves on X. For any closed subset Z C X, the
subcategory

S8z = {F € Coh(X) | Supp(F) C 7}
is a Serre subcategory. To verify this, suppose

0—-9F—=G—->H—0

is a short exact sequence of coherent sheaves. Then Supp(G) = Supp(F) U
Supp(H), which shows that § has support in Z if and only if both F and H
have support in Z. This construction is fundamental to the theory of perverse
sheaves and provides the building blocks for stratifications by support, as we
will see in the next section.

The next example shows a case of a subcategory of an abelian which is not
a Serre subcategory.

Example 4.2.5. Let A be the abelian category of abelian groups (see Exam-
ple 1.8.3) and B be the full subcategory of A for which Obj(B) = {Z}. To
show that B is not a Serre subcategory of A, recall from Example 2.3.22 that
there exists a short exact sequence in A of the form 0 — Z — Z — Z /27 — 0.
Since Z € Obj(B) and Z/2Z ¢ Obj(B), this implies that B is not a Serre
subcategory of A.

We will close this series of examples with an important example that will
be used in the subsequent section, that of the kernel subcategory.
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Example 4.2.6. Let A and B be abelian categories and F' : A — B be an
exact functor. The kernel of F, denoted Ker(F'), is defined to be the full
subcategory of A for which Obj(Ker(F')) = {a € A | F(a) = 0}. To show that
Ker(F') is a Serre subcategory of A, let 0 — a — b — ¢ — 0 be a short exact
sequence in A and recall from Proposition 2.4.6 that 0 — F(a) — F(b) —
F(c) — 0 is a short exact sequence in B.

Now, on the one hand, assume that F'(b) = 0. In this case, the exactness
of the sequence 0 — F(a) — 0 — F(c¢) — 0 at F(a) implies that F(a) = 0
and the exactness of this sequence at [F'(c) implies that F(c¢) = 0. On the
other hand, suppose that F'(a) = F/(¢) = 0. In this case, the exactness of the
sequence 0 — 0 — F(b) — 0 — 0 at F(b) implies that F'(b) = 0. This shows
that Ker(F') is indeed a Serre subcategory of A, a fact that will be used in the
next section.

We close this section on Serre subcategories by showing that every Serre
subcategory of an abelian category is also abelian.

Proposition 4.2.7. Let A be an abelian category. If 8 is a Serre subcategory
of A, then & is also an abelian category.

Proof. Recall that an abelian category is a pre-additive, additive, pre-abelian
category, in which every monomorphism is the kernel and every epimorphism
is the cokernel of a morphism. We will successively verify that, when § is a
Serre subcategory of an abelian category, it has each one of these properties.

To verify that 8 is a pre-additive category, recall that it is a full subcategory
of A. This means that Homg(a,b) = Homy(a,b) for all a,b € Obj(8). Since
A is assumed to be an abelian (and, in particular, pre-additive) category, we
see that every Homg(a, b) is an abelian group when endowed with the group
structure of Homy(a, b).

To verify that 8 is an additive category, we will show that § has an initial
object and finite products. To verify that 8§ has a zero object (which is both
initial and terminal), first recall that Obj(8) is non-empty. Hence we can fix
an object a € Obj(§8). Then recall from Example 2.3.23 that 0 — a Moy g —
0 — 0 is a short exact sequence in A. Since a € Obj(8) and § is a Serre
subcategory of A, we obtain that 0 € Obj(8) as well. Finally, since 0 is an
initial (and terminal) object of A, we conclude that 0 is an initial object of 8.
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To verify that every pair of objects a,b € Obj(8) has a product in 8, recall
that, since A is an abelian category (and, in particular, additive), the product
a X b exists in A. Moreover, recall from Example 2.3.24 that there is a short
exact sequence 0 — a — (a X b) — b — 0 in A. Since a,b € Obj(8) and 8 is
a Serre subcategory of A (by hypothesis), we conclude that a x b € Obj(8).
This shows that 8 is an additive category.

To verify that § is a pre-abelian category, we will verify that every morphism
in 8 has a kernel and cokernel in 8. To do that, let f € Homg(a,b) be a
morphism in 8. Since f is also a morphism in A and A is an abelian category
(by hypothesis), the kernel and cokernel of f are in A. Then, recall from
Example 2.3.25 that there is a short exact sequence 0 — ker(f) — a —
im(f) — 0 in A. Since a € Obj(8) and § is a Serre subcategory of A (by
hypothesis), this implies that ker(f) and im(f) are also in 8.

To finish this proof, we verify that every monomorphism is the kernel and
every epimorphism is the cokernel of a morphism in 8. This follows from
the fact that the kernels and cokernels of morphisms in 8§ are in § and the
hypothesis that A is an abelian category. 0

In the next section we will see how Serre subcategories allow us to form
quotient categories, extending this idea further.

4.3. SERRE QUOTIENTS

In many areas of mathematics, one often simplifies a structure by identifying
or quotienting out certain substructures. Since Serre subcategories behave
well with respect to the abelian structure, they are precisely the subcategories
that admit such a quotient construction. In this section, we formalise this
process in the context of abelian categories by defining their quotients by
Serre subcategories. First, we present the abstract definition, then illustrate
it with examples, and finally describe its explicit construction.

Definition 4.3.1 (Serre quotient). Given an abelian category A and a Serre
subcategory 8, the quotient category A/8 is an abelian category satisfying the
following universal property:

e There exists an exact functor @ : A — A/8, such that Q(s) = 0 for all
s € Obj(8),
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e If B is an abelian category and there exists an exact functor F': A — B
such that F(s) = 0 for all s € Obj(8), then there exists a unique functor
F:A/$ — B such that FoQ = F.

This definition, while technical, characterizes the quotient category by a
universal property. The intuition behind it is that A/8 is the largest abelian
category obtained from A by making all objects in § become zero, while pre-
serving exactness. To help understand this definition, we begin with the most
basic case.

Example 4.3.2. Let A be any abelian category and let 8 be the full subcat-
egory of A such that Obj(8) = {0}. In this case, the quotient category A/S
is equivalent to A itself. Indeed, let the functor @ : A — A/S be the identity
functor on A. Recall from Example 2.4.2 that () = Id, is exact. Then, notice
that @(0) = 0. Next, let B be an abelian category and F' : A — B is any
exact functor such that F(0) = 0. Finally, notice that a functor F': A — B is
such that ' = FoQ = F oldy = F if and only if F = F. This confirms that
A satisfies the universal property for the quotient A/S.

While the quotient by zero changes nothing, the quotient of a category by
itself kills everything. This opposite extreme illustrates how the Serre quotient
can collapse an entire category.

Example 4.3.3. Let A be any abelian category and 8 be the A category itself.
In this case, the quotient category A /S8 is equivalent to the zero category (that
is, the category with a single object 0 and only the morphism idy). Indeed, let
Q : A — A/8 be the functor that sends every object to 0 and every morphism
to idg. Notice that () is an exact functor, since 0 = 0 — 0 — 0 — 0 is an
exact sequence. Next, let B be an abelian category and F : A — B be an
exact functor such that F'(a) = 0 for all a € Obj(A) = Obj(8). The unique
functor F' : A/8 — B (which sends 0 to 0 and idy to idy) satisfies the equation
Fo(@Q = F. This shows that the Serre quotient by the entire category is trivial.

Having seen some examples above, we now turn to the explicit description
of Serre quotients. The following result provides a concrete construction of the
quotient category. To state this result, we will introduce the following notation.
When x and 2’ are objects of a category and there exists a monomorphism
x — 2/, we will say that x is a subobject of ' and denote it by x C 2’
Further, when x is a subobject of 2/, that is, when there exists a monomorphism
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i:x — ', we will denote the cokernel of this monomorphism by 2’/x and call
it the quotient of «' by x.

Theorem 4.3.4. Let A be a small abelian category and & be a Serre subcat-
egory.

(a) The relation defined by (a,b) < (a/,0) if and only if @’ C a and b C ¥V is
a pre-order on the set Obj(A) x Obj(A).

(b) For each pair of objects a,b € Obj(A), the set I(a,b) defined by
{(z,y) € Obj(A) x Obj(A) | = C a, a/xr € Obj(8),y C b and y € Obj(8)}

is a directed set when endowed with the pre-order < induced from the set
Obj(A) x Obj(A).

(c) The triple (Obj(Q), Mor(Q), og) given by

Obj(Q) = Obj(A), Homg(a,b) = colimy(qp Homyu(z,y),

and og induced from oy via the colimit forms a category.

(d) The category Q = (Obj(Q), Mor(Q), oq) is abelian.

(e) The functor @ : A — Q defined by

Q((I) =a and Q(f) = COhmI(a,b) (f>7

for all a,b € Obj(A) and f € Homy(a,b), is exact and moreover Q(s) = 0
for all s € Obj(8).

(f) For every abelian category B and every exact functor F' : A — B such
that F(s) = 0 for all s € §, there exists a unique functor F': Q — B such
that FoQ = F.

This theorem provides an explicit construction for the quotient category.
This construction using colimits of morphisms is technical but makes the quo-
tient category computable in examples. The proof of this result is also technical
and can be found in [Gab62, I11.1]. Instead of providing a proof for it, we will
use it to explicitly describe a quotient of the category of vector spaces.

Example 4.3.5. Let k be a field, A be the abelian category of k-vector spaces,
and 8 be the Serre subcategory of A consisting of finite-dimensional k-vector
spaces. The quotient category A/8 can be constructed as follows. The ob-
jects of A/§ are k-vector spaces and the morphisms are linear transforma-
tions. Two vector spaces V and W are isomorphic is A/8 if and only if they
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are isomorphic modulo finite-dimensional subspaces. (In particular, any two
finite-dimensional k-vector spaces are isomorphic in A/8.) And two linear
transformations 7S : V' — W represent the same morphism in A/S§ if they
differ by a map that factors through finite-dimensional spaces. Intuitively,
A/8 records only the infinite-dimensional part of each vector space.

This example shows how Serre quotients provide a way to collapse a subcat-
egory. In the next section, we will see how such quotients fit into the broader
framework of recollements, which describe how an abelian category can be
assembled from a subcategory and its quotient.

4.4. RECOLLEMENTS

After constructing Serre quotients, it is natural to ask how an abelian cate-
gory can be reconstructed from a subcategory and its quotient. The notion of
recollement (French for “gluing”) answers this question. This notion formal-
izes the idea of decomposing a category into simpler pieces that fit together
coherently. Introduced by Beilinson, Bernstein, and Deligne in their work on
perverse sheaves, recollements provide a framework for understanding how a
category can be reconstructed from a subcategory and a quotient category.
In this section, we define recollements of abelian categories and illustrate this
concept through several examples.

Definition 4.4.1 (recollement). A recollement of an abelian category A is a
diagram of abelian categories and functors of the form
i J
Wi A S
A N
v Ji
such that:

(i
(ii

(i

) (i*,i4,4') and (i, j*, j.) are adjoint triples,

) the functors i,, ji and j, are fully faithful,

) i o g1 =0,

(iv) for every object A € A, there exist natural exact sequences

GjfA—>A—ii*A—0 and 0—i4A— A— jj A
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In this case, we say that A is a recollement of A’ and A”.

Intuitively, a recollement is a generalized abstract splitting property in an
exact sequence of categories and functors. The splitting on the left not neces-
sarily being equal to the splitting on the right. Hence, this definition encodes
a rich structure with many consequences. To build intuition about it, we begin
with the most elementary case of recollement, where the decomposition is as
simple as possible.

Example 4.4.2. Given an abelian category A, if we choose A’ = A and
A” =0, we obtain A as the following recollement of A" and A”":

Ida 0
N RN
—Id — .

Az A 020

Idy 0

To justify this claim, we will verify that the diagram above satisfies conditions
()-(iv) of Definition 4.4.1.

(i) To show that (Idg,Id4,Ids) is an adjoint triple, notice that
Homy(Id4(a),b) = Homy(a,b) = Homy(a, Id4 (b)),

for all a,b € Obj(A), and to show that (0,0,0) is also an adjoint triple,
notice that

Homy(0(a),b) = Homy(0,b) = {0} = Homy(a,0) = Homy(a, 0(b)),
for all a,b € Obj(A).

(ii) To show that Id4 and 0 are fully faithfull, first recall from Example 2.2.2
that Idy is a fully faithful functor. The fact that 0 : 0 — A is also fully
faithful follows from the fact that

Homy(0,0) = {0} = Homy,(0,0).
(iii) The fact that Id4 00 = 001d4 = 0 follows direct from the definition of 0.
(iv) The exactness of the sequences
0(a) - a —Idg(a) >0 and 0 — Idg(a) — a — 0(a),

for all @ € Obj(A), has been proved in Example 2.3.23.

This shows that, in fact A is a recollement of A and 0. Similarly, we could
also take A" = 0 and A” = A to obtain a similar recollement. Although trivial,
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these recollements show that every abelian category admits at least one such
decomposition.

The trivial recollements above provide no actual decomposition. The first
meaningful example arise when we consider the direct sum of two abelian
categories.

Example 4.4.3. Given two abelian categories, A and B, consider their direct
sum, that is, consider the category A @& B whose:

e objects are pairs (a, b) of objects a € Obj(A) and b € Obj(B),
e morphisms are pairs (f, g) of morphisms f € Mor(A) and g € Mor(B),

e compositions is induced by the compositions of A and B in the following
way: if fi € Homg(as,az), g1 € Homgp(by,b2), fo € Homy(ag,as) and
g2 € Homg(bo, bs), then

(f2,92) caen (f1,91) = (fa0a f1, g2 0B g1) -

We can characterize A & B as a recollement of A and B,

it Jx
RN
A i —AeB—j Ss
v Ji

To justify this claim, we will construct explicit functors i',i,,%*, ji, 5*, ji.
First, let 7, : A — A @ B be the functor defined by assigning

e the object (a, 0g) to an object a € Obj(A),
e the morphism (f, Os) to a morphism f € Mor(A).

Then, let i* =i* : A ® B — A be the functor defined by assigning

e the object a to an object (a,b) € Obj(A & B),
e the morphism f to a morphism (f,g) € Mor(A & B).

Similarly, let j* : A & B — B be the functor defined by assigning

e the object b to an object (a,b) € Obj(A & B),
e the morphism ¢ to a morphism (f,g) € Mor(A & B).

Finally, let 7, = 51 : B — A & B be the functor defined by assigning



NOTES ON CATEGORY THEORY 123

e the object (04, b) to an object b € Obj(B),
e the morphism (04, g) to a morphism g € Mor(B).

The verification that these functors i',i,,*, j, j*, ji actually satisfy condi-
tions (i)-(iv) of Definition 4.4.1 is straight-forward.

The example above is important for its generality. We close this section with
an example that illustrates a natural geometric instance of this phenomenon.

Example 4.4.4. Let X be a Noetherian scheme, Z be a closed subscheme
of X, and U = X \ Z be its open complement. Denote by i : 7 — X
and j : U — X the inclusion maps. Consider the categories A = Coh(X),
A’ = Coh(Z) and A” = Coh(U). We obtain a recollement:
it J
A fE A {]_*5 A
~_ — ~ ~

i b

Here 1, is the pushforward of coherent sheaves from Z to X, ¢* is the pull-
back (restriction) to Z, and i' is given by Ext*(Oz, —) (shifted appropriately).
Similarly, j* is the restriction to U, while j; is extension by zero and j, is
the pushforward from U to X. The short exact sequences in the recollement
axioms reflect the fact that any coherent sheaf on X sits in exact sequences
relating its restrictions to U and Z. This recollement is fundamental to the
theory of stratifications by support and provides the geometric foundation for
the examples we will encounter in subsequent sections.

Having understood how a category can be decomposed into a subcategory
and a quotient via recollement, we are ready to describe how a sequence of
such decompositions leads to the notion of stratification.

4.5. STRATIFICATIONS

While recollements describe how an abelian category can be built from a
subcategory and its quotient, stratifications organize a sequence of such rec-
ollements along a poset. Thus, a stratification provides a systematic way to
decompose an abelian category into simpler layered pieces with these layers
fitting together in a coherent way. Such layered structures arise naturally in
algebraic geometry and representation theory. In this section, we introduce
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the formal definition of a stratification and illustrate this concept with a few
examples.

Definition 4.5.1 (stratification). Given an abelian category A and a poset
P, a stratification of A with respect to P consists of a family of Serre subcat-
egories, Ag C A for each subset ) C P, such that the following conditions
hold:

(i) Ag
i) Ap = A,
(ili) if @ C @' are two subsets of P, then Ag C Agy,
(iv) for every subset ) C P, if we denote by ¢ the maximal element of ), then
there exists a recollement Ag\ (g3 — Ag — Ayq).

Intuitively, each stratum A, represents one layer of the category, and the
recollement condition ensures that A can be built step by step by gluing lay-
ers. To build intuition for this definition, we begin with the most elementary
examples and gradually increase complexity. The first example shows that the
notion of stratification is non-trivial even in the simplest case.

Example 4.5.2. Let A be any abelian category and let P = {0} be the one-
element poset. Then there is a unique stratification of A with respect to P,
given by Ap = 0 and Ap = A. This example is trivial but important, as it
shows that every abelian category admits at least one stratification.

The trivial stratification provides no decomposition whatsoever. While it
illustrates the basic formalism, stratifications become most interesting and
useful when they arise naturally. We now present an example that appears
throughout algebraic geometry.

Example 4.5.3. Let X be a Noetherian scheme and let A = Coh(X) be the
category of coherent sheaves on X. Suppose X has a finite stratification by
locally closed subsets:

X:X0|_|X1|_||_|Xn,

where each X; is locally closed and the closures satisfy Xy € X; C --- C X,,.
Define P = {0,1,...,n} with the usual ordering, and for each i € P, let

A<i ={F € Coh(X) | Supp(F) C XoUX, U---UX;}.
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Each A<; is a Serre subcategory, and these define a stratification of Coh(X).
The stratum A; consists of sheaves supported on the closure of X; but not on
any smaller stratum.

To close this part of the notes, we will consider stratifications arising in
representation theory, more specifically, in certain categories of modules for
Lie superalgebras. We will begin by reviewing the context in which these
stratifications arise and then proceed to construct them.

Let g be a finite-dimensional simple Lie superalgebra over C and let A be
an associative, commutative algebra over C. The tensor product g ®c A is a
super vector space over C, when endowed with the Zs-grading given by

(0®c A)g:=gg®c A and (g®&c A)y:= g1 Qc 4,
and admits a unique Lie super bracket that satisfies
[ ®a, y@blg 4= [2,9lg® (a-a0)

for all z,y € g and a,b € A. Lie superalgebras of this form are known as map
superalgebras, generalized current superalgebras, or generalized loop superalge-
bras.

Since the Lie superalgebra g is finite-dimensional and simple, we can choose
a Cartan subalgebra h. The isomorphism classes of finite-dimensional simple
g-modules are parametrized by a subset of h*, which is also a subset of the
so-called weight lattice of g with respect to h. This weight lattice contains all
possible weights of finite-dimensional g-modules (see [Kac78, Proposition 2.5]).

For every finite-dimensional simple Lie superalgebra g, there exists a reduc-
tive Lie algebra v C g for which bg is the (non-super) Cartan subalgebra (see
[BCM19, §2] for more details). We define the category C4 as the full subcate-
gory of the category of g A-modules whose objects are those modules that are
equal to the direct sum of their finite-dimensional irreducible r-submodules.
In particular, every object of €4 is a weight module for f. The fact that €4 is
an abelian category follows from the fact that the category of g ®c A-modules
is abelian and the observation that the subcategory €4 is closed under taking
kernels, cokernels and finite direct sums.

In the remainder of this section, we will construct a stratification of the
abelian category C4. We begin by constructing Serre subcategories A<, and
Acx. For A € b*, denote by A<, the full subcategory of C4 consisting of
g ®c A-modules M such that the weight space M, is non-zero only if @ < A.
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Similarly, let A be the full subcategory of A<, consisting of modules M such
that the weight space M, is non-zero only if < A. The fact that A<, and
A~ are Serre subcategories of C4 follows from the observation that they are
closed under taking kernels, cokernels, and direct sums.

Now, we will prove that the inclusion functor from every subcategory A
to A<y is fully faithful.

Proposition 4.5.4. The inclusion functor 7, : A<y — A<, is fully faithful.

Proof. Since A is a full subcategory of A<y, we have that

Homy_, (N1, N2) = Homy_, (i(N1),i.(N2)) for every Ny, Ny € Acy. O

Now, we construct a left adjoint functor to this inclusion functor. That is,
we define a functor * : A<y — A~ for which there exist natural isomorphisms

Homy_, (M, i.(N)) — Homy_, (i*(M), N).
To do that, we assign to each object M of A<,, the quotient

i"(M) = M/Myy, where Myy:=Y U(g® A)M,,
HEA
and assign to each morphism f € Homy_, (M, M’), the unique g ®c A-module
homomorphism i*(f) : i*(M) — ¢*(M") such that i*(f) o mas = mpp o f, where
M — (M) and myp : M’ — i*(M’) denote the respective projections.
Verifying that ¢* satisfies the functor axioms is straightforward.

In the following proposition, we prove that this functor * is indeed left
adjoint to the inclusion functor i,.

Proposition 4.5.5. The functor ¢* : A<\ — A, is left adjoint to the inclusion
functor 7, : Aoy — A<).

Proof. To prove that the functor i* is left adjoint to the functor i,, we will
construct natural isomorphisms

CI)M’N : HOII]AS/\(M, Z*(N)) — HOHlA<)‘(Z'*(M),N)

for all M € A<y and N € A.,. To do that, begin by noticing that i.(N)
is simply N viewed as an object of A<y. Then, denote by 7 the canonical
projection M — *(M). The natural isomorphism ®,; y on a morphism f
in Homy_, (M, i.(N)) is defined to be the unique homomorphism of g ®¢ A-
modules f : i*(M) — N such that f = for. O
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We now construct a right adjoint functor i' : A<y — Ay to the inclusion
functor i, : Ay — A<y. On objects, we define i'(M) to be the sum of all
g ®c A-submodules of M that are in A_). This sum is a g ®¢c A-submodule of
M contained in A, (by construction), as well as its unique largest submodule
in A.y. To define #* on morphisms, let f be a morphism in Homy_, (M, M’).
We define i'(f) by restricting f, that is, by setting i'(f)(m) = f(m) for all
m € i'(M). To verify that this is a well-defined functor is straightforward.

In the next result, we prove that this functor i' is indeed right adjoint to
the inclusion functor.

Proposition 4.5.6. The functor i' : A<y — A is right adjoint to the
inclusion functor %, : A-y — A<y.

Proof. To prove that the functor ¢' is right adjoint to the functor i,, we will
construct natural isomorphisms

(I)N,M . HOIHAS)\@*(N),M) — HOHIA<>\(N, Z'<M))

for all N € Ay and M € Ac,. Recall that i.(N) is simply N viewed as
an object of A<y, and let j : i'(M) < M denote the inclusion of the largest
submodule of M contained in A.y. Thus, the natural isomorphism ®y j; on a
morphism f € Homy_, (i.(N), M) is defined to be the unique homomorphism
f:N =i (M) such that f =jo f. O

The constructions above yield the left half of the stratification diagram

]

7 Jx
P RS
-A<)\ - Z* HAS)\ 7]* H‘A)\v
~_ ~_

7* il

We now proceed to construct its right half. Begin by defining A, to be the
full subcategory of h ®¢ A-modules consisting of modules N such that

(h®1)n=A(h)n forall h € h and n € N.

In other words, A, is the category of h®¢ A-modules on which h®1 acts via the
weight A. The fact that the category A, is abelian follows from the fact that
the category of h®c A-modules is abelian and the observation that subcategory
Ay is closed under taking kernels, cokernels, and finite direct sums.

We now define a functor j* : A<y — A, by assigning: to a module V' in
A<y, its A-weight space, j*(V') := V), and to a morphism f : M — N in A<,
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its restriction, j*(f) := f[,, : Mx — Nx. To verify that j* indeed defines a
functor is also straightforward.

One can directly prove that j* is an exact functor. We will obtain this result
as a consequence of the construction of left and right adjoint functors for it.
To construct these adjoint functors, let g = n~ @ hEn™ be a triangular decom-
position of the Lie superalgebra g. If we let b™ = h @ n* be the corresponding
Borel subalgebra of g, then b™ ®¢ A is a parabolic subalgebra of g ®c¢ A.

We will construct a left adjoint functor j; to j* using induction from this
parabolic subalgebra to the full superalgebra g ®c A. In this context, the
functor jy : Ay — A<y is commonly known as the Weyl functor.

Define the functor j; on objects in the following way. To an object N in A,
we assign ji(N) := U(g® A) Q@u(p+ea) N, where the b ® A-module structure on
N is given by extending its h ® A-action trivially on n™ ® A, the left U(g® A)-
module structure on U(g ® A) is given by left multiplication, and the right
U(b* ® A)-module structure on U(g® A) is given by right multiplication. To a
homomorphism of h ® A-modules f : N — N’, we assign the tensor morphism
Ji(f) = idygea) ®f. The fact that ji is indeed a functor follows from the
functorial properties of the tensor product over U(bT ® A).

In the next result, we prove that j, is in fact a left adjoint functor to the
functor j*.

Proposition 4.5.7. The functor j : Ay — A<, is left adjoint to the functor
j* : -ASA — .A)\.
Proof. We will construct natural isomorphisms

(I)N,M : Homﬂg(jg(]\f), M) — HomAA(N,]*(M))

for all N € Ay and M € Acy. For a morphism f € Homy_, (ji(N), M), we
define the morphism @y 5 (f) € Homg, (IV, j*(M)) by setting

Oy a(f)(n) = f(1®@n) forallne N.

The fact that ®x ) is a natural isomorphism follows from the tensor-Hom
adjunction

Homy geea) (U(g ®c A) Quepraea) N, M) = Homypreea) (N, M). O

Having established the adjunction between j and j*, we now proceed to
show that the functor 7 is fully faithful. To do that, we begin by recalling that
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a left adjoint functor is fully faithful if and only if the unit of the adjunction is
a natural isomorphism. We will use this criterion to prove that the left adjoint
functor 7, to 5* is fully faithful.

Proposition 4.5.8. The functor j : Ay, = A<, is fully faithful.

Proof. We will show that the unit of the adjunction between j, and j* is a
natural isomorphism. Since 7 : idg, — j* o ji is a natural transformation,
this is equivalent to showing that ny : N — j*(5(IN)) is a bijection for every
object N in Ay. From the proof of Proposition 4.5.7, we recall that 7y is given
by nn(n) = 1 ® n, where 1 ® n is viewed as an element of j1(N)y. The fact
that ny is a bijection follows from the Poincaré-Birkhoff-Witt Theorem (see,
for instance, [Hum72, Theorem 17.3]). O

In the stratification of the category €4, the right adjoint to the functor j*
will be given by a restricted form of coinduction. To explicitly construct this
functor, let b~ = h ® n~ denote the opposite Borel subalgebra. Then, assign
to an object N in A, the restricted coinduction

]*(N) = @ HomU(b*@)cA) (U(g Qc A)> N)u >
web*

where the left U(b~ ® A)-module structure on N is given by trivially extending
its U(h® A)-module structure, the left U(b~® A)-module structure on U(g® A)
is induced by left multiplication, and the right U(g ® A)-module structure on
U(g®A) is induced by right multiplication. To a morphism f € Homg, (N, N'),
we assign the morphism j.(f) : j.(N) — j.(N') defined by post-composition,
J«(f) = — o f. It is straightforward to verify that j,. preserves identities and
composition, thus defining a functor. We now establish the right adjointness
of 7, with respect to the functor j*.

Proposition 4.5.9. The functor j, : Ay — A<, is right adjoint to the functor
j* : ‘AS/\ — AA.

Proof. We will construct natural isomorphisms
Qv : Homy_, (M, j.(N)) — Homy, (5*(M), N)

for every M € A<y and N € A,. This natural isomorphism is defined on a
morphism f € Homy_, (M, j.(N)) to be the morphism @y n(f) : My — N
given by )

Prrn(f)(m) = f(m)(1) for all m € My,
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where 1 € U(g ®c A) denotes the unit element. The fact that @, v defines a
natural isomorphism follows from the tensor-Hom adjunction

Homy ggeay (M, Homyge-gea)(U(g @c A), N)) = Homyp-gea) (M, N). O

Having established the adjunction between j* and j., we now proceed to
show that the restricted costandard functor j, is fully faithful. To do that, we
begin by recalling that a right adjoint functor is fully faithful if and only if the
counit of its corresponding adjunction is a natural isomorphism. We will use
this criterion to prove that j, is fully faithful.

Proposition 4.5.10. The functor j, : Ay — A<, is fully faithful.

Proof. We will prove that the counit of the adjunction between j* and j, is
a natural isomorphism. Since this counit ¢ : j* o j, — id4, is a natural
transformation (by construction), this is equivalent to proving that ey is a
bijection for every object N in A,. From the proof of Proposition 4.5.9, we
recall that ey is explicitly given by en(f) = f(1) for f € 7*(j(N)) = ju(N)a.
The fact that ey is a bijection follows from the weight module structure of
J«(N):

j*(N)A = HOIIIU([,—®CA)(U(9 Qc A), N)A = HomC(C, N) = N. O]

We have thus constructed both halves of the stratification diagram

!

7 Jx
P NS
Ay —ix = Acx — 77 = Ay,
~_ ~_

7" yl

To conclude this part we will verify that the functors satisfy the conditions
(iii) and (iv) of Definition 4.4.1.

The vanishing condition in Definition 4.4.1(iii) follows immediately from the
definitions of the functors ¢, and j*. In fact, if M is an object of €4 for which
the weight space M, is non-zero only if u < A, then j*(i.(M)) = M, = {0}.

To verify the existence of the first exact sequence in Definition 4.4.1(iv),
recall that, for every object M of A<y, the object i,(i*(M)) is the quotient
M /Mgy viewed as an object of A<y. Since M is assumed to be in A<, its
submodule M, is the one generated by M,. Hence, the projection M —
M/ U(g®c A)M) is an epimorphism M — i,(i*(M)); whose kernel is given by
U(g ®c A)My. Then, notice that j(5*(M)) = ji(My) = U(g @c A) @u(ptaca)
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M,. Hence, the left U(g ®¢ A)-module structure on M induces a morphism
J(7*(M)) — M, explicitly given by u ® m +— wu - m, whose image is exactly
U(g ®c A)M,. This means that there exists a natural exact sequence

HGF(M)) = M — i, (i*(M)) = 0.

To verify the existence of the second exact sequence in Definition 4.4.1(iv),
begin by recalling that, for every object M of A<y, the object i.(i'(M)) is its
largest submodule whose weights are < \. Hence, the inclusion i, (i'(M)) — M
is a monomorphism, whose image is 4,(i'(M)) itself. Then, recall that

G2 (77 (M) = ju(My) = @D Homy (e (U(g @c A), My),..
pneh*

Thus, we can define a morphism ¢ : M — j,.(5*(M)) by setting ¢(m)(u) = um.
This is a homomorphism of g ®c A-modules whose kernel is i,(:*(M)). To
justify this claim, notice that ¢ is the image of idy;, under the adjunction
Homy, (7. (M), j.(M)) = Homy_, (M, j.(j*(M))). This implies that ¢ is a well-
defined homomorphism of g ®¢ A-modules. The fact that ker(¢) = i, (i*(M))
follows from the fact that ¢ maps every weight vector in M whose weight is
not < A to 0.

This completes the proof that the category €4 admits a stratification by the
categories Ay:

.|

A ]*
‘/.\ K‘—\
A<)\ — 1x %AS)\ 7]* HA)\)
v v

» %k

i Ji



Part V

Appendices

APPENDIX A. GROUPS

A.1. Axioms and basic examples of groups. We begin this section with
the abstract definition of a group. Groups are one of the most fundamen-
tal structures in mathematics, providing a framework for studying symmetry,
transformations, and algebraic equations. The definition of a group captures
the essential properties of many familiar mathematical objects, such as num-
bers, vectors, and permutations.

Definition A.1. A group is a non-empty set G equipped with a function
m: G x G — G (i.e., a binary operation) satisfying the following conditions:

(i) m is associative, i.e., m(m(a,b),c) = m(a,m(b,c)) for all a,b,c € G.
(ii) There exists e € G such that m(e,g) = g = m(g,e) for all g € G.
(iii) For each g € G, there exists § € G such that m(g,g) = e = m(g, g).

The element e is called the identity element of G. The element g is called the
inverse of g. A group (G, m) is said to be commutative or abelian when m is
a commutative binary operation, i.e., when m(g, h) = m(h, g) for all g, h € G.

Now we will present some familiar examples of groups. We begin with the
integers equipped with their usual addition. This example is foundational, as
it illustrates how the abstract definition of a group applies to a well-known
mathematical structure.

Example A.2. Consider the set of integers Z = {...,—-2,—1,0,1,2,...}
equipped with the binary operation m: Z x Z — Z given by m(a,b) = a + b.

The pair (Z,m) is an abelian group. In fact:
132
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(i) For all a,b, c € Z, we have
m(m(a,b),c) = m(a+b,c)

=(a+0b)+c
=a+ (b+c¢)
=m(a,b+ c)
= m(a,m(b,c)).

(ii) The identity element of (Z,m) is 0. Indeed, for all a € Z, we have:

m(a,0) =a+0=a=0+a=m(0,a).
(iii) The inverse of an element a € Z is —a € Z. Indeed, for all a € Z, we
have:
m(a,—a) =a+ (—a) =0 = (—a) +a =m(—a,a).
(iv) Moreover, for all a,b € Z, we have m(a,b) = a+b=b+ a =m(b,a).

The integers under addition are just one example of an abelian group. An-
other important class of abelian groups arises from vector spaces, which are
central to linear algebra.

Example A.3. Let k be a field (for example, k = R) and (V,+,) be a k-
vector space. By the definition of a vector space from Linear Algebra, the set
V' equipped with the binary operation + : V' x V' — V is an abelian group.
In particular, the sets of rational numbers Q, real numbers R, and complex
numbers C are abelian groups when equipped with their usual addition.

While addition is a natural binary operation that forms a group, not all
familiar operations satisfy the group axioms. In the next example, we will see
why the set of real numbers under multiplication does not form a group.

Example A.4. Consider the set of real numbers, R, and the binary operation
m : R x R — R given by m(a,b) = ab. Observe that (R, m) is not a group.
Although m is associative and 1 is its identity element, there is no inverse for
0. Indeed, m(a,0) = 0 for all a € R, so there is no 0 € R such that m(0,0) = 1.

Although the set of real numbers under multiplication is not a group, we
can modify this example slightly to obtain a group. By excluding the element
that causes issues (in this case, 0), we can construct a group structure. This
idea is explored in the next example.
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Example A.5. Let (k,+,-) be a field (for example, k = R) and consider the
set k\ {0}. From the Definition B.1, it follows that k \ {0} equipped with the
binary operation m : k \ {0} x k\ {0} — k\ {0} given by m(a,b) = a-bis an
abelian group.

Having explored examples of groups arising from numbers and vector spaces,
we now turn to the smallest possible group. This example is important because
it demonstrates that even the simplest non-empty set can be equipped with a
group structure.

Example A.6. The set with a single element {e} equipped with the unique
binary operation m: {e} x {e} — {e} (given by m(e,e) = e) is a (abelian)
group. To verify that ({e}, m) is indeed a group, notice that

(i) mm(e, ), €) = mle, €) = (e, m(e, )

(ii) e is the identity element, since m(e,e) = e;
(iii) e is the inverse of e, since m(e,e) = ¢;
(iv) {e} is abelian, since m(e,e) = e = m(e, e).

This group is called the trivial group.

While the trivial group is the smallest possible group, groups can also be
constructed from more complex structures, such as sets of functions. In the
next example, we will see how the set of bijections on a set forms a group
under composition.

Example A.7. Let X be a non-empty set and G be the set of bijections
f X — X. When this set GG is equipped with the composition of functions,
it becomes a group. To verify this claim, observe that:

(i) Composition of functions is associative, since
(folgon)(z) = flgoh)(x))
= f(g(h(z))
= (fog)(h(x))
=(fog)oh)(z), forallze X.

(ii) The identity function idy : X — X, explicitly given by idyx(z) = z for all
x € X is the identity element, since

(f oidx)(x) = f(idx(x)) = f(z) = idx(f(z)) = (idx of)(z),
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forall z € X.

(iii) By definition, every bijection f : X — X has an inverse function f~1,
such that fo f7! =idyx and f~'o f =idx.

This group is called the symmetric group on X.

In the following sections, we will denote m(g, h) in a simpler way, by either
g - h,or g+ h (in the abelian cases), or gh.

A.2. Group homomorphisms. In this section, we will define group homo-
morphisms. Intuitively, a homomorphism between two groups is a function
that preserves the important structure that these sets have, namely their op-
eration. Homomorphisms are essential in group theory because they allow us
to compare groups and study their properties in a structured way.

Definition A.8. Let (G,m¢g) and (H,mpy) be two groups. A group homo-
morphism from G to H is a function f: G — H satisfying:

(i) f(ma(g1,92)) = mu(f(g1), f(g2)) for all g1, g2 € G,
(i) f(eq) = en.

An isomorphism of groups is a group homomorphism that is bijective. We
say that the group G is isomorphic to the group H when there exists an
isomorphism of groups f: G — H.

To better understand the abstract definition of group homomorphisms, we
will consider some concrete examples. We will start with a familiar example
from linear algebra and then explore more specialized cases.

Example A.9. Let k be a field (for example, k = R), and let (V,+y, ) and
(W, +w, -w) be two k-vector spaces. By definition, every linear transformation
T:V — W is a homomorphism from the group (V, +y) to the group (W, +w),
since

T(vy +vy ve) = T(v1) +w T(v2) for all vy, vy € V.
Moreover, every linear isomorphism 7": V' — W is a group isomorphism, since
it is a bijection.

A particular case of the previous example arises when we consider specific
groups and functions. In the next example, we will see how the exponential
function serves as a group isomorphism between the additive group of real
numbers and the multiplicative group of positive real numbers.
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Example A.10. Consider the additive group R, the multiplicative group
R.g = {a € R | a > 0}, and the function exp: R — R given by exp(a) = e”.
To verify that exp is a group isomorphism, notice that:

(i) exp(a +b) = e*™? = e%® = exp(a) - exp(b) for all a,b € R.

(ii) exp(0) =€ = 1.
This shows that exp is a group homomorphism. Moreover, In: Ryy — R is

the inverse of exp. Therefore, exp is a bijection, and consequently, a group
isomorphism.

While the previous examples involve specific functions, there is always a
trivial homomorphism between any two groups. This example illustrates the
simplest possible homomorphism, which maps every element of the domain
group to the identity element of the codomain group.

Example A.11. Let G and H be two groups. Observe that the constant func-
tion f: G — H given by f(g) = ey for all g € G is a group homomorphism.
Indeed:

(1) f(9192) = en = emen = f(g1)f(g2) for all g1,90 € G.
(ii> f(eG) = €H-

This homomorphism is called the trivial homomorphism. Observe that this
homomorphism is an isomorphism if and only if G = H = {e}.

To finish this section, we will explore the properties of group homomor-
phisms under composition and the identity function. These properties allow
us to define the set of automorphisms of a group, which itself forms a group.

Example A.12. Let G, H, K be groups, and f: G — H, g: H — K be
group homomorphisms. To verify that the composition go f: G — K is also
a group homomorphism notice that:

(i) For all g1, 92 € G,

(90 [)9192) = 9(f(9192))
9(f(91)f(g2))
9(f(91))g(f(g2))
=(go f)(g1)(go [)(g2)-

(ii) (go f)lec) = g(f(ec)) = glen) = ex-
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This explains why the composition of group homomorphisms is also a group
homomorphism.

Next, we will verify that the identity function idg: G — G is a group
homomorphism. Indeed:

(i) For all g1, g2 € G, we have idg(g192) = g192 = idc(g1) ida(g2)-

(11) idg(eg) = €qg.

Finally, let Aut(G) denote the set of all group isomorphisms from G to itself.
To verify that Aut(G) is a group under composition, notice that:

(i) the composition of two automorphisms is an automorphism;
(ii) the identity function idg is an automorphism;

(iii) every automorphism f: G — G has an inverse f~': G — G, which is also
an automorphism;

(iv) the composition of functions is associative.

Thus, Aut(G) is a group, called the automorphism group of G.

A.3. Subgroups. Intuitively, subgroups are subsets of a group that inherit
the group structure of the group in which they are contained. We begin this
section with the formal definition of subgroups.

Definition A.13. Let (G, mg) be a group. A subgroup of G is a non-empty
subset H C G satisfying:

(i) If hy, hy € H, then mg(hy, he) € H.
(ii) If h € H, then h™' € H.

Now, we will present some examples of subgroups. The first example shows
that every group has at least one subgroup.

Example A.14. Given any group G, the subsets {eg} and G are subgroups
of G. Indeed:

e for {eg}, observe that
ecec = eq € {eq} and  eg' =eq € {eq}-
e for (G, observe that, if g,h € GG, then
gheG and ¢ 'ed.
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Thus, {e¢} and G are subgroups of G.

Having seen the subgroups that every group contains, we now consider a
more interesting example. The integers form a subgroup of the rational num-
bers under addition, as shown in the next example.

Example A.15. Consider the additive group (Q, +). Let us show that Z is a
subgroup of Q. Indeed, observe that if a,b € Z, then a + b € Z and —a € Z.

Subgroups also arise naturally in the context of vector spaces: every vector
subspace is a subgroup of the additive group of the vector space. However, not
every subgroup of a vector space is a vector subspace, as shown in the next
example.

Example A.16. Given a vector space (V,+,-), by definition, every vector
subspace is a subgroup of V. (In particular, the subspaces {0} and V are
subgroups of V' — compare with Example A.14.) However, not every subgroup
of (V,+) is necessarily a vector subspace of V. For example, we can verify that
Q is a subgroup of the additive group (R, +). Indeed, observe that if a,b € Q,
then a + b € Q and —a € Q. However, QQ is not a vector subspace of R; for
instance, T e R, 1 € Q,but 7- 1 =7 ¢ Q.

We close this section showing that not all subsets of a group are subgroups.
In the next example, we will see that the multiplicative group of non-zero real
numbers is not a subgroup of the additive group of real numbers.

Example A.17. The multiplicative group (R \ {0},-) is not a subgroup of
the additive group (R, +). Indeed, by Definition A.13, a subgroup is a subset
closed under the same operation as the group. In this case, R\ {0} is not
closed under addition, which is the operation of the group R. Indeed, for
every a € R\ {0}, we have a —a =0 ¢ R\ {0}.

A.4. Kernels and images of homomorphisms. In this section, we will
define kernels and images of group homomorphisms. In addition to providing
tools for analysing groups and homomorphisms, these objects also provide
tools for constructing subgroups.

Definition A.18. Let f: G — H be a group homomorphism. Define the
kernel of f as the set

ker(f) ={g € G| f(g9) = en},
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and define the image of f as the image of the function f, that is, the set

im(f) = {h € H | there exists g € G such that f(g) = h}.

We turn now to some concrete examples. We will start with a familiar
example from linear algebra and then explore more specialized cases.

Example A.19. Consider two R-vector spaces V' and W, viewed as groups.
Recall from Example A.9 that every linear transformation 7: V. — W is a
group homomorphism. Moreover, the kernel of T" as a linear transformation is
the same as the kernel of T" as a group homomorphism, and the image of T" as a
linear transformation is the same as the image of T" as a group homomorphism.

While the previous example involves vector spaces, kernels and images also
play an important role in more general group homomorphisms. In the next
example, we will see how the trivial homomorphism provides a simple but
instructive case.

Example A.20. Consider two groups G, H, and the trivial homomorphism
f: G — H, given explicitly by f(g) = eg for all g € G (see Example A.11).
By construction, f(g) = ey for all g € G, so ker(f) = G. Additionally, the
only element h € H such that there exists g € G satisfying f(g) = his h = ey.
This shows that im(f) = {ey} (the trivial subgroup).

Another important example arises when we consider the canonical projection
from the integers to the integers modulo n. This example illustrates how
kernels and images can be used to analyse quotient groups.

Example A.21. Let n > 1 and recall that the set Z,, := {0,1,...,n — 1} is a
group under the addition modulo n. Then, consider the canonical projection
f:7Z — Z,, given explicitly by fi(z) = Z.

The kernel of f is {kn | k € Z}. Indeed, on one hand, if z € {kn | k € Z},
then f(z) = f(kn) = kn = 0 € Z,. On the other hand, if Z = 0 € Z,, this
means that the remainder of the division of z by n is 0; that is, n divides z.

Therefore, ker(f) = {kn | k € Z}.

Now, we will verify that the image of f is Z,. Indeed, for each h € Z,, we
can choose an element g € {0,1,...,n — 1} C Z to obtain f(g) = h. This
shows that f is surjective
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The next result shows that kernels and images of homomorphisms are al-
ways subgroups of the domain and codomain respectively of the corresponding
homomorphism.

Proposition A.22. If f: G — H is a group homomorphism, then ker(f) is a
subgroup of G and im(f) is a subgroup of H.

Proof. See [DF04, §3.1, Proposition 1]. O

A.5. Quotient groups and normal subgroups. The main goal of this sec-
tion is to define quotient groups, that is, quotients of a group by one of its
subgroups. For this quotient to also have a group structure, the subgroup by
which we quotient must satisfy a certain condition. Subgroups that satisfy
this condition are called normal. We begin this section by constructing the
quotient as a set.

Consider a group G and a subgroup N C (. Define a relation on G as
follows:

g~ h ifand onlyif h7'g e N.

We will verify that ~ is an equivalence relation:

e For every g € G, we have g ~ ¢g. Indeed, since N is a subgroup of G, it
follows that g7'g = eq € N.

o If g ~ h, then h™'g € N by definition. Since N is a subgroup of G, it
follows that g7'h = (h='g)~' € N. Hence, h ~ g.

e Ifa ~bandb~ ¢, then b='a,c 'b € N. Since K is a subgroup of G, it
follows that ¢ 'a = (¢7'b)(b~'a) € N. Hence, a ~ c.

Denote by G/N the set of equivalence classes of the relation ~, denote by
g € G/N the equivalence class represented by the element g € GG, and by gN
(resp. Ng) the subset {gn € G | n € N} (resp. {ng € G | n € N}). A set
of the form gN (resp. Ng) is called a left coset of g (resp. right coset of g).
Observe that h = g if and only if h € gN. That is, the elements of the left
coset of g are the representatives (in ) of the equivalence class g (which is an
element of G/N).

Definition A.23. Given a group G, a subgroup N C G is said to be normal
if gN = Ng for every g € G.
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The next result shows that a necessary and sufficient condition for the quo-
tient G/N to admit a group structure when equipped with the operation in-
duced from the group G is that the subgroup NV is normal. This fact highlights
the relevance of normal subgroups and justifies their definition.

Proposition A.24. Let G be a group and N C G a subgroup.

(a) Equipped with the operation m: (G/N) x (G/N) — (G/N) given by
m(g, h) = gh, the set G/N is a group if and only if N is a normal subgroup
of G.

(b) If N is a normal subgroup of G, then the function f: G — G/N given by
f(g) = g is a group homomorphism and ker(f) = N.

Proof. See [DF04, §3.1, Proposition 5. O

By Proposition A.24(a), N C G is a normal subgroup if and only if G/N is
a group. In the following examples, we will construct normal subgroups and
their respective quotient subgroups.

Example A.25. For every group G, the trivial subgroup {eg} C G is a
normal subgroup. Indeed, g{ec} = {9} = {ec}g for every g € G. Moreover,
the quotient group G/{eq} is isomorphic to G. Indeed, consider the function
f: G — G/{eg} given by f(g) = g. By Proposition A.24(b), f is a group
homomorphism whose kernel is {ec}. Thus, f is injective. Additionally, since
every element of G/{eg} is, by construction, of the form g for some g € G, it
follows that f is surjective. This shows that f is an isomorphism between GG

and G/{eg}.

Having seen the simplest example of a normal subgroup and its quotient,
we now consider the opposite extreme: the case where the subgroup is the
entire group. This example illustrates how the quotient group can sometimes
be trivial.

Example A.26. For every group G, the subgroup G C G is normal. Indeed,
9gG = {gh | h € G} C G and, for a fixed g € G, for any k € G, we have
h =g 'k € Gand gh = g(g~'k) = k. This shows that gG = G. The proof
that Gg = G is completely analogous. With this, we conclude that G is a
normal subgroup of G.

Moreover, the quotient group G/G is the trivial group. To verify this claim,
we will show that G/G contains only one element; that is, we will show that
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g =¢ec € G/G for every g € G. This is true because e 'g = g € G for every
g € G. Therefore, G/G contains only one element, and hence, it is the trivial

group.

Next, we turn to a more interesting example involving the permutation
group S3. This example demonstrates how normal subgroups can be identified
using homomorphisms and how they relate to quotient groups.

Example A.27. Let X be a non-empty set and G be the symmetric group
defined in Example A.7. When X has 3 or more elements, we can construct a
subgroup of G that is not normal.

If X has three or more distinct elements, we can fix three of them, x1, x5, 3.
Using the first two elements, we can define a function f € G in the following
way:

f(z1) =29, f(xa) =217 and f(z)==o forall z € X\ {xy,22}.
The subset H := {idx, f} is a subgroup of G, since
idXoidX:idm, idXof:foidX:f, fof:idX,
idy! =idy and f'=f.

However, the subgroup H is not normal in G. To justify this claim, we will
construct an element g € G such that gH # Hg. Namely, let g : X — X be
the function defined by

g(xe) =x3, g(xs) =22 and g(z)==a forall z € X\ {xq,z3}.

Notice that the subset gH consists of the functions g and g o f, while the
subset Hg consists of the functions g and f o g. To justify that gH # Hg, we
have to show that go f # f o g. In fact,

(go f)(z1) =g(z2) =23 and  (fog)(r1) = f(21) = 72

This shows that go f # f o g, and as a consequence, that gH # Hg and that
H is not a normal subgroup of G

In abelian groups, the situation is simpler: every subgroup is normal. This
is because the group operation is commutative, which ensures that left and
right cosets coincide.

Example A.28. Let G be an abelian group and H C G a subgroup. To verify
that H is normal, notice that, for every ¢ € G and h € H, we have gh = hg
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because G is abelian. Thus, gH = {gh | h € H} ={hg | h € H} = Hg. This
shows that H is a normal subgroup of G.

Finally, we revisit the connection between kernels and normal subgroups.
The kernel of any group homomorphism is always a normal subgroup, as shown
in the following example.

Example A.29. Let f : G — H be a group homomorphism. Recall from
Proposition A.22 that ker(f) is a subgroup of G. To show that ker(f) is
normal, notice that

Flakg™) = f(9) f(k)f(g™)
genflg™")
9 g™
997"

6G)

(
i
I
i
i

€H-

for all g € G and k € ker(f). This means that gkg—! € ker(f), or equivalently,
that gker(f) C ker(f)g. One can verify that the other inclusion is also true
in a completely analogous way. This implies that ker(f) is a normal subgroup

of G.

A.6. Isomorphism Theorems. The theme of this section are the Isomor-
phism Theorems. These results are very important for group theory and have
numerous applications.

The First Isomorphism Theorem is analogous to the Rank-Nullity Theorem
in Linear Algebra. It states that, for every group homomorphism, there exists
an isomorphism between its image and the quotient of its domain by its kernel.

Theorem A.30. For every group homomorphism f: G — H, there exists a
group isomorphism G/ ker(f) = im(f).

Proof. See [DF04, §3.3, Theorem 16]. O

The Second Isomorphism Theorem is a result that allows for cancellations
in group quotients.
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Theorem A.31. Let G be a group and H, K C G subgroups. If H C Ng(K),
then: HK is a subgroup of G, K is normal in HK, (H N K) is normal in H,
and there exists a group isomorphism HK/K = H/(H N K).

Proof. See [DF04, §3.3, Theorem 18]. O

The Third Isomorphism Theorem, like the second, allows for cancellations
in quotients. In this case, the cancellation is done with respect to the normal
subgroup by which we quotient (the “denominator”). This theorem has a
very important consequence: it establishes relationships between the normal
subgroups of a group and those of its quotients.

Theorem A.32. Let G be a group. If H C K are normal subgroups of G,
then K'/H is a normal subgroup of G/H and there exists a group isomorphism

o/

KJH ~ G/K.

Proof. See [DF04, §3.3, Theorem 19]. O

APPENDIX B. RINGS

A ring is a set equipped with two binary operations, typically called addi-
tion and multiplication, that satisfy certain axioms. They generalize integers,
polynomials, and other familiar mathematical objects. In this section, we
will define rings, explore their properties, and provide concrete examples to
illustrate these concepts.

Definition B.1. A ring R is a set equipped with two binary operations
st:RxR—R and m: Rx R — R,
satisfying the following conditions:
(i) (R, s) is an abelian group,
(ii) m(a,m(b,c)) = m(m(a,b),c) for all a,b,c € R,
(iii) m(s(a,b),c) = s(m(a,c), m(b,c)) for all a,b,c € R,
(iv) m(a, s(b,c)) = s(m(a,b),m(a,c)) for all a,b,c € R.

The identity element of the group (R,s) will be denoted by 0r. A ring
(R, s,m) is said to be commutative if

m(a,b) = m(b,a) for all a,b € R.
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A ring (R, s,m) is said to have an identity if there exists 1 € R such that
m(lg,a) = a =m(a,lR) for all a € R.

A ring (R, s,m) is called a division ring if it has an identity and (R\ {Og}, m)
is a group (i.e., every non-zero element of R has a multiplicative inverse). A
ring (R, s, m) is called a field if it is a commutative division ring (in particular,

(R,s) and (R \ {Or}, m) are abelian groups).

To better understand the abstract definition of rings, we will consider some
concrete examples. We will start with the simplest possible ring and then
move to more familiar examples like the ring of integers and polynomial rings.

Example B.2. Consider a set with a single element, {0}, and define the
binary operations:

s: {0} x {0} - {0} by s(0,0)=0,
m: {0} x {0} = {0} by m(0,0)=0.
We will verify that ({0}, s,m) is a ring.
(i) ({0}, s) is the trivial group,

(i1) m(0,m(0,0)) = m(0,0) = 0 and m(m(0,0),0)) = m(0,0) =0,
(iii) m(s(0,0),0) = m(0,0) = 0 and s(m(0,0),m(0,0)) = s(0,0) =0,
(iv) m(0,s(0,0)) = m(0,0) = 0 and s(m(0,0),m(0,0)) = m(0,0) = 0.

Observe that 0ypy = 0. Additionally, {0} is a commutative ring with identity
Lty = 0. Indeed, m(0,0) = 0 = m(0,0). However, {0} is not a division ring
(and consequently not a field), since {0} \ {0403} = 0 is not a group.

This ring is called the trivial ring.

Having seen the simplest example of a ring, we now consider a more familiar
example: the ring of integers.

Example B.3. Consider the set Z (of integers) equipped with the binary
operations

s:Zx7—7 givenby s(a,b)=a+Db,
m: Z xZ—7Z given by m(a,b) = ab.
We will verify that (Z, s, m) is a ring.

(i) We have seen in Example A.2 that (Z, s) is a group.
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(ii) for all a,b,c € Z,
m(a, m(b,c)) = m(a,bc) = a(be) = (ab)c = m(ab, c¢) = m(m(a,b),c)).
(iii) for all a,b,c € Z,
m(s(a,b),c) =m(a+b,c) = (a+b)c = ac+bec = s(ac, bc) = s(m(a,c),m(b, c)).
(iv) for all a, b, c € Z,
m(a, s(b,c)) = m(a,b+c) = a(b+c) = ab+ac = s(ab, ac) = s(m(a,b),m(a,c)).

Observe that 0z = 0. Additionally, Z is a commutative ring with identity
1z = 1. Indeed, m(a,b) = ab = ba = m(b,a) and m(1,a) = a = m(a,1) for
all a,b € Z. However, Z is not a division ring (and consequently not a field).
Indeed, m(2,a) = 1 if and only if a = . Since § &€ Z, the element 2 € Z\ {0}
does not have a multiplicative inverse.

To close this appendix, we will show that the set of integers modulo n, is
also a ring.

Example B.4. The set of integers modulo n, denoted Z,, is also a ring. The
operations of addition and multiplication are defined as follows:

§: Ty X Ly — Loy given by s(@,b) =a+b

ab.

m: Loy X Ly — Ly given by m(a,b)
We will verify that (Z,, s, m) is a ring.

(i) Recall that (Z,,s) is a group.
(ii) for all a,b, c € Z, we have

m(a, m(b,¢)) = m(a,bc) = a(bc) = abc = (ab)é = m(ab,¢) = m(m(a,b),c)).

(iii) for all a,b, c € Z, we have
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(iv) for all a, b, c € Z, we have

m(a, s(b,¢)) = m(a,b + c)

I
V)
—
Q
8

= s(m(a,b),m(a,c)).

Observe that 0z = 0. Additionally, Z, is a commutative ring with identity
1z = 1. Indeed, m(a,b) = ab = ba = m(b,a) and m(1,a) = @ = m(a, 1) for all
a,be’.
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