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Abstract. These notes serve as a compilation of foundational material

in category theory, intended primarily as a personal reference to help un-

derstand recent developments in representation theory. While no original

results are presented, this text provides a self-contained exposition of three

central themes: abelian categories, tensor categories, and stratification of

abelian categories.

The material is organized into four distinct parts. Part I establishes the

theory of abelian categories, building up from the axioms of abstract cat-

egories and universal constructions (including limits, colimits, kernels, and

cokernels) through pre-additive and additive structures. Part II acts as a

bridge, detailing some types of functors, such as exact, fully faithful, and

adjoint functors, that are essential for the remainder of the text. Part III

focuses on categories equipped with internal multiplication, systematically

defining and exemplifying monoidal, braided, and symmetric monoidal cat-

egories. Finally, Part IV addresses the stratifications of abelian categories.

In this section, we introduce the machinery of Serre subcategories and Serre

quotients, culminating in the theory of recollements and stratifications.

Contents

Part I Abelian Categories 3

1.1. Abstract categories 3

1.2. Constructions in categories I 6

1.3. Preadditive categories 16

1.4. Additive categories 20

1.5. Constructions in categories II 22

1.6. Pre-abelian categories 32

1.7. Constructions in categories III 33
1



2 TIAGO MACEDO

1.8. Abelian categories 37

Part II Functors 46

2.1. Functors 46

2.2. Faithful, Full and Fully Faithful Functors 50

2.3. Constructions in Categories IV 54

2.4. Exact Functors 70

2.5. Adjoint Functors 76

Part III Tensor categories 82

3.1. Natural Transformations 82

3.2. Equivalences of Categories 85

3.3. Products of Categories 90

3.4. Monoidal Categories 99

3.5. Braided and Symmetric Monoidal Categories 108

Part IV Stratifications 112

4.1. Subcategories 112

4.2. Serre Subcategories 114

4.3. Serre Quotients 117

4.4. Recollements 120

4.5. Stratifications 123

Part V Appendices 132

Appendix A. Groups 132

Appendix B. Rings 144

References 147



Part I

Abelian Categories

The main goal of this part is to introduce abelian categories. This concept

distils the essential properties of abelian groups and provides an appropriate

axiomatic framework to study several objects in algebra, topology and alge-

braic geometry.

We will build the theory of abelian categories constructively, moving from

the general to the specific. We begin with the fundamental definitions of

abstract categories and basic constructions. Subsequently, we enrich this

structure by introducing preadditive and additive categories, which impose

an abelian group structure on the sets of morphisms. Finally, by necessitating

the existence of kernels and cokernels, we arrive at the definition of pre-abelian

and, ultimately, abelian categories. On the route through these concepts, we

provide several illustrative examples.

1.1. Abstract categories

We will begin by presenting the abstract definition of a category. Categories

were created to provide a language that unifies different mathematical fields,

enabling the transfer of results and ideas between them. This universality

comes with a lot of flexibility, but one immediately notices that it also comes

with a lot of abstraction.

Definition 1.1.1. A category C is a triple (Obj,Mor, ◦), where:

• Obj is a class, whose elements are called the objects of C;

• Mor is also a class, whose elements are called the morphisms of C, and

moreover, for each pair of objects A and B in Obj, there is a subclass of

Mor, denoted by Hom(A,B), whose elements are called morphisms from

A to B and often denoted by arrows A→ B;

• ◦ is a relation Mor×Mor → Mor called composition, that satisfies the

following conditions:
3
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(i) for every three objects A,B,C and two morphisms f ∈ Hom(A,B),

g ∈ Hom(B,C), there exists a morphism (g ◦ f) ∈ Hom(A,C).

(ii) for every four objects A,B,C,D in Obj and every three morphisms

f ∈ Hom(A,B), g ∈ Hom(B,C), h ∈ Hom(C,D), we have:

(h ◦ g) ◦ f = h ◦ (g ◦ f);

(iii) for every object A in Obj, there is a morphism idA ∈ Hom(A,A)

called the identity morphism, that satisfies the following conditions:

for every morphism f ∈ Hom(A,B), we have f ◦ idA = f , and for

every morphism g ∈ Hom(B,A), we have g ◦ idB = g.

To help make this abstract definition more concrete, we will now provide

two examples of categories. We begin with the smallest possible category for

which Obj is non-empty.

Example 1.1.2. The smallest category for which Obj is non-empty is the one

with only one object and one morphism. More explicitly:

• Obj = {⋆}, where ⋆ is the only object of this category;

• Mor = {id⋆}, that is, id⋆ is the only morphism of this category;

• the composition is given by id⋆ ◦ id⋆ = id⋆.

Notice that, in fact, all the conditions given in Definition 1.1.1 hold.

The next example is a more concrete and well-known one. It shows how sets

and functions can form a category.

Example 1.1.3. The category of sets, which we will denote by Sets, is given

as follows:

• The objects of the category Sets are all the sets;

• The morphisms of Sets are all the functions between sets;

• The composition of morphisms is the usual composition of functions.

Notice that all the conditions given in Definition 1.1.1 hold. In fact:

(i) for every three sets A,B,C and two functions f : A → B, g : B → C,

their composition (g ◦ f) : A→ C is also a function.
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(ii) for every four sets A,B,C,D and every three functions f : A → B,

g : B → C, h : C → D, we have:

((h ◦ g) ◦ f)(a) = (h ◦ g)(f(a))
= h(g(f(a)))

= h((g ◦ f)(a))
= (h ◦ (g ◦ f))(a), for all a ∈ A.

(iii) for every set A, its identity function is the function idA : A→ A explicitly

given by idA(a) = a for all a ∈ A. Notice that, for every set B, every

function f : A→ B and every function g : B → A, we have:

(f ◦ idA)(a) = f(idA(a)) = f(a) for all a ∈ A,
(idA ◦g)(b) = idA(g(b)) = g(b) for all b ∈ B.

We will see further examples of categories in the following sections. To finish

this section, we would like to make a few technical remarks.

Notice that in the definition of category, objects and morphisms form classes

rather than sets. This distinction arises because, in set theory, one faces limi-

tations when trying to define collections that are “too large” or “too general”.

In fact, in standard set theory (such as Zermelo-Fraenkel set theory with the

Axiom of Choice, or ZFC) a set is a collection of elements that is itself an

element of some larger set. However, there are strict limitations on the size

of a set due to the Axiom of Regularity (which prevents sets from containing

themselves directly or indirectly) and the Axiom of Infinity (which ensures

that no set is “too large”).

In particular, the collection of all sets cannot itself be a set because such

a collection would lead to paradoxes like Russell’s paradox, which questions

whether a set of all sets that do not contain themselves contains itself. To

avoid such paradoxes, one introduces the notion of classes for collections that

may be “too large” to be sets, but are still useful in formalising mathematical

concepts. In particular, this allows the category Sets from Example 1.1.3 to

be a category.

However, as we have seen in Example 1.1.2, there are instances where the

objects or morphisms of a category form a set. In the cases where the mor-

phisms form a set, the category is called locally small, and in the cases where

the objects also form a set, the category is called small. Most of the categories
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that we will deal with in the coming sections will be either locally small or

small.

1.2. Constructions in categories I

In this section, we will present some constructions in abstract categories.

At first sight, some of these constructions can seem too abstract. In the

examples, we provide more concrete instances of these abstract definitions,

and in subsequent sections, we will use them.

1.2.1. Isomorphisms. In this subsection, we will introduce isomorphisms,

which are central to understanding how objects in a category relate to each

other. More specifically, two objects are said to be isomorphic when they are

essentially the same from the perspective of the category. This relationship is

formally captured by the following definition.

Definition 1.2.1. Given a category C and two objects A,B ∈ Obj, a mor-

phism f ∈ Hom(A,B) is said to be an isomorphism when there exists a mor-

phism g ∈ Hom(B,A) such that:

g ◦ f = idA and f ◦ g = idB .

In this case, g is called the inverse of f and the objects A and B are said to

be isomorphic.

This abstract definition of isomorphism captures the idea of sameness be-

tween elements. In the following examples, we will see how this abstract

definition works in more concrete cases.

Example 1.2.2. Let C be a category such that Obj is non-empty. For every

object X ∈ Obj, its identity morphisms is an isomorphism. In fact, recall that

idX ◦ idX = idX . This implies that idX is the inverse of itself, that idX is an

isomorphism, and that X is isomorphic to itself.

In the first example above, we considered identities as isomorphisms. How-

ever, isomorphisms can be more general and relate distinct objects. In the

next example we will see how isomorphisms are precisely the bijections in the

category of sets.

Example 1.2.3. In the category of sets (see Example 1.1.3), isomorphisms

are bijections. To justify that, we begin by recalling that in the category of
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sets, the objects are sets, and the morphisms are functions between sets. In

particular, a morphism (function) f from an object (set) A to an object (set) B

is an isomorphism when there exists a function g : B → A such that g◦f = idA

and f ◦ g = idB. This means that f and g are bijections between A and B.

1.2.2. Initial and terminal objects. In this subsection, we turn our atten-

tion to the concepts of initial and terminal objects. Their definition is the first

one in which a “universal property” appears.

Definition 1.2.4. An object I in a category C is said to be an initial object if,

for every object X in Obj, there is a unique morphism from I to X. Similarly,

an object T in C is said to be a terminal object if, for every object X in Obj,

there is a unique morphism from X to T .

To see how these definitions are realized in concrete cases, we will exhibit the

initial and terminal objects in two categories that we have already introduced.

We begin by showing how the unique object of the smallest category for which

Obj is non-empty is both initial and terminal.

Example 1.2.5. In the category constructed in Example 1.1.2, the unique

object ⋆ is both an initial and a terminal object. In fact, since ⋆ is the only

object in this category, the identity morphism satisfies id⋆ : ⋆→ ⋆, and id⋆ is

the only morphism in this category, ⋆ satisfies the conditions for being both

an initial and a terminal object in this category.

The category from Example 1.2.5 is particularly simple, as it has only one

object, and thus both initial and terminal object conditions are trivially satis-

fied. To provide a more substantial example, we now consider the category of

sets, where the concepts of initial and terminal objects are a little less trivial.

Example 1.2.6. In the category of sets (see Example 1.1.3), the empty set is

the only initial object, and every set with one element is a terminal object.

To justify that the empty set, ∅, is an initial object in the category Sets,

we must show that, for every set X, there exists a unique function f : ∅ → X.

Since ∅ has no elements, there are no elements to be mapped, and thus, the

empty function is the only function from the ∅ to X.

Now, to justify that a set {⋆} with one element (⋆) is terminal in Sets,

we need to show that, for every set X, there exists exactly one function from

X to {⋆}. Since {⋆} has only one element, any function f : X → {⋆} must
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assign every element x ∈ X to ⋆. Thus, for every set X, there exists only the

constant function from X to {⋆}.

The examples above highlight the general idea that initial objects “map to”

every other object uniquely, while terminal objects “receive a unique mapping”

from every other object. The next proposition formalizes a key property of

initial and terminal objects, namely, that when they exist, initial and terminal

objects are essentially (up to isomorphism) unique in a category.

Proposition 1.2.7. Let C be a category.

(a) If I and I ′ are initial objects of C, then I and I ′ are isomorphic.

(b) If T and T ′ are terminal objects of C, then T and T ′ are isomorphic.

Proof. We will prove each part of this proposition separately.

(a) Suppose that I and I ′ are both initial objects in C. We want to prove

that I and I ′ are isomorphic.

By the definition of an initial object, for each object X in C, there is a

unique morphism from I to X, and a unique morphism from I ′ to X. In

particular, there exists a unique morphism from I to I ′, say f : I → I ′,

and also a unique morphism from I ′ to I, say g : I ′ → I.

Now, consider the composition g ◦ f : I → I. Since I is initial, there is

a unique morphism from I to itself, which must be the identity morphism

idI . Therefore, we have:

g ◦ f = idI .

Similarly, consider the composition f ◦ g : I ′ → I ′. Since I ′ is initial,

there is a unique morphism from I ′ to itself, which must be the identity

morphism idI′ . Therefore, we have:

f ◦ g = idI′ .

Thus, f and g are mutually inverse, so f is an isomorphism, and as a

consequence I is isomorphic to I ′.

(b) Suppose now that T and T ′ are both terminal objects in C. We want to

prove that T and T ′ are isomorphic.

By the definition of a terminal object, for each object X in C, there is a

unique morphism from X to T , and a unique morphism from X to T ′. In

particular, there exists a unique morphism from T to T ′, say f : T → T ′,

and also a unique morphism from T ′ to T , say g : T ′ → T .
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Now, consider the composition f ◦ g : T ′ → T ′. Since T ′ is terminal,

there is a unique morphism from T ′ to itself, which must be the identity

morphism idT ′ . Therefore, we have:

f ◦ g = idT ′ .

Similarly, consider the composition g ◦ f : T → T . Since T is terminal,

there is a unique morphism from T to itself, which must be the identity

morphism idT . Therefore, we have:

g ◦ f = idT .

Thus, f and g are mutually inverse, so f is an isomorphism, and as a

consequence, T is isomorphic to T ′. □

It is important to note that not all categories have an initial or terminal

object. The existence of these objects depends on the specific structure of

the category in question. We end this subsection showing an example of a

category with an initial object and without any terminal one.

Example 1.2.8. Consider a category C with three objects, Obj = {A,B,C},
and five morphisms, Mor = {idA, idB, idC , f, g}, where f ∈ Hom(B,A) and

g ∈ Hom(B,C). A diagrammatic picture of this category is the following:

A B C
f g

idA idB idC

In this case, the object B is an initial object, but no object in this category is

terminal. To justify the claim that B is an initial object, notice that

Hom(B,A) = {f}, Hom(B,B) = {idB} and Hom(B,C) = {g},

that is, there exists exactly one morphism from B to every object in C. Now,

to justify the claim that no object in C is terminal, notice that

Hom(C,A) = ∅, Hom(A,B) = Hom(C,B) = ∅ and Hom(A,C) = ∅.

In a similar way as in the example above, one can construct a category with

no initial object and a terminal object, or a category with no initial object and

no terminal object, or a category with several isomorphic initial (or terminal)

objects.
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1.2.3. Products. Products are the abstract categorical concept that general-

izes Cartesian products and direct products. They provide a way to combine

objects in a category into a single object that “projects” back to the original

objects in a universal way. In this section, we will define products abstractly

and explore concrete examples to illustrate their properties.

Definition 1.2.9. Given a category C, the product of two of its objects, A

and B, is a triple (P, p1, p2) that satisfies the following properties:

(i) P ∈ Obj,

(ii) p1 ∈ Hom(P,A),

(iii) p2 ∈ Hom(P,B),

(iv) for every object X in Obj and every pair of morphisms f1 ∈ Hom(X,A)

and f2 ∈ Hom(X,B), there exists a unique morphism F : X → P such

that p1 ◦ F = f1 and p2 ◦ F = f2.

To better understand the abstract definition of products, we will consider

some concrete examples. We will start with the simplest possible category and

then move to more familiar categories like the category of sets.

Example 1.2.10. Let C be a category with only one object and only one

morphism, defined in Example 1.1.2. The product of its only object ⋆ with

itself is the triple (⋆, id⋆, id⋆).

To justify this, notice that ⋆ ∈ Obj and id⋆ ∈ Hom(⋆, ⋆). Also notice that,

since this category only has the object ⋆ and the morphism id⋆, then we only

need to analyse the case where X = ⋆ and f1 = f2 = id⋆ : ⋆ → ⋆. In fact,

there exists the morphism F = id⋆ : ⋆→ ⋆ that satisfies id⋆ ◦ id⋆ = id⋆.

Having seen the simplest example of a product, we now consider a more

familiar category: the category of sets. Here, products correspond to the

Cartesian product of sets.

Example 1.2.11. In the category of sets, the product of two non-empty sets is

the Cartesian product of these sets equipped with their respective projections.

To justify this, let A and B be sets, recall that their Cartesian product is the

set defined by

A×B := {(a, b) | a ∈ A, b ∈ B},
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and define the functions

p1 : (A×B)→ A given by p1(a, b) = a,

p2 : (A×B)→ B given by p2(a, b) = b.

Given a set X and two functions, f1 : X → A and f2 : X → B, define a

function F : X → (A × B) as being given by F (x) = (f1(x), f2(x)). Notice

that F is a well-defined function, that (p1◦F )(x) = p1(F (x)) = f1(x) and that

(p2 ◦ F )(x) = p2(F (x)) = f2(x) for all x ∈ X. This justifies that the triple

(A×B, p1, p2) is, in fact, the product of the objects A and B in the category

of sets.

The following proposition formalizes the fact that products are unique up

to isomorphism, meaning that any two products of the same pair of objects

are essentially the same in a categorical sense.

Proposition 1.2.12. Let C be a category, and let A and B be objects of C. If

(P, p1, p2) and (P ′, p′1, p
′
2) are two products of A and B, then P is isomorphic

to P ′.

Proof. First, recall from the construction of (P, p1, p2) that p1 ∈ Hom(P,A)

and p2 ∈ Hom(P,B). Then, recall from the defining property of (P ′, p′1, p
′
2),

that there exists a unique morphism f : P → P ′ such that p′1 ◦ f = p1 and

p′2 ◦ f = p2.

Similarly, by switching P and P ′, we see that there exists a unique morphism

f ′ : P ′ → P such that p1 ◦ f ′ = p′1 and p2 ◦ f ′ = p′2. Hence, (f ′ ◦ f) : P → P

is a morphism such that:

p1 ◦ (f ′ ◦ f) = (p1 ◦ f ′) ◦ f = p′1 ◦ f = p1

and

p2 ◦ (f ′ ◦ f) = (p2 ◦ f ′) ◦ f = p′2 ◦ f = p2.

Further, recall from the construction of (P, p1, p2) that p1 ∈ Hom(P,A) and

p2 ∈ Hom(P,B). Then, recall from the defining property of (P, p1, p2) itself,

that there exists a unique morphism ϕ : P → P such that p1 ◦ ϕ = p1 and

p2 ◦ ϕ = p2. Since ϕ = idP satisfies these conditions and, as we have shown

above, ϕ = f ′ ◦ f also satisfies these conditions, we conclude that f ′ ◦ f = idP .

Thus, f : P → P ′ and f ′ : P ′ → P are isomorphisms. □
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In the proposition above, we showed that products are unique, when they

exist. However, not all categories have products for every pair of objects. In

the next example, we will see a simple category where the product of two

objects does not exist.

Example 1.2.13. Consider a category C with three objects, Obj = {A,B,C},
and five morphisms, Mor = {idA, idB, idC , f, g}, where f ∈ Hom(A,B) and

g ∈ Hom(C,B). A diagrammatic picture of this category is the following:

A B C
f g

idA idB idC

In this case, the product of the objects A and C does not exist. In fact, there

exists no object P in C such that Hom(P,A) and Hom(P,C) are simultaneously

non-empty:

Hom(A,C) = ∅, Hom(B,A) = Hom(B,C) = ∅ and Hom(C,A) = ∅.

Notice that in Definition 1.2.9, we have defined the product of two objects in

an abstract category. However, one can define, in a similar way, the product of

any family of objects. Specifically, if {Ai}i∈I is a family of objects in a category

C (I being its indexing set), then its product is an object P ∈ Obj together

with a family of morphisms {pi}i∈I satisfying the following properties:

• pi : P → Ai for each i ∈ I,

• for any object X ∈ Obj for which a family of morphisms {fi : X → Ai}i∈I
exists, there exists also a unique morphism F : X → P such that pi ◦F =

fi for all i ∈ I.

In particular, in the case where the index set I is empty, we have the fol-

lowing result:

Proposition 1.2.14. Let C be a category. If the product of an empty family

of objects in C exists, then it is a terminal object of C.

Proof. By definition, the empty product is an object P such that for any

object X, there exists a unique morphism f : X → P . Therefore, if the empty

product exists, it must be a terminal object of C. □
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1.2.4. Coproducts. Coproducts are the abstract categorical concept that

generalizes disjoint unions. They provide a way to combine objects in a cat-

egory into a single object that “contains a copy” of the original objects in a

universal way. In this section, we will define coproducts abstractly and explore

concrete examples to illustrate their properties.

Definition 1.2.15. Given a category C, the coproduct of two of its objects,

A and B, is a triple (C, i1, i2) that satisfy the following properties:

(i) C ∈ Obj,

(ii) i1 ∈ Hom(A,C),

(iii) i2 ∈ Hom(B,C),

(iv) for every object X in Obj and every pair of morphisms f1 ∈ Hom(A,X)

and f2 ∈ Hom(B,X), there exists a unique morphism F : C → X such

that F ◦ i1 = f1 and F ◦ i2 = f2.

To better understand the abstract definition of coproducts, we will consider

some concrete examples. We will start with the simplest possible category and

then move to more familiar categories like the category of sets.

Example 1.2.16. Let C be a category with only one object and only one

morphism, defined in Example 1.1.2. The coproduct of its only object ⋆ with

itself is the triple (⋆, id⋆, id⋆).

To justify this, notice that ⋆ ∈ Obj and id⋆ ∈ Hom(⋆, ⋆). Also notice that,

since this category only has the object ⋆ and the morphism id⋆, then we only

need to analyse the case where X = ⋆ and f1 = f2 = id⋆ : ⋆ → ⋆. In fact,

there exists the morphism F = id⋆ : ⋆→ ⋆ that satisfies id⋆ ◦ id⋆ = id⋆.

Having seen the simplest example of a coproduct, we now consider a more

familiar category: the category of sets. Here, products correspond to the

disjoint union of sets.

Example 1.2.17. In the category of sets, the coproduct of two non-empty sets

is the disjoint union of these sets equipped with their respective inclusions. To

justify this, let A and B be sets, recall that their disjoint union is the set

defined by

A ⊔B := {xa | a ∈ A} ∪ {yb | b ∈ B},
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where we treat xa and yb as formal elements in order to differentiate elements

that may eventually be in the intersection A ∩B. Then, define the inclusions

i1 : A→ (A ⊔B) given by i1(a) = xa,

i2 : B → (A ⊔B) given by i2(b) = yb.

Given a set X and two functions, f1 : X → A and f2 : X → B, define a

function F : (A ⊔B)→ X as being given by

F (z) =

{
f1(a), if z = xa for some a ∈ A,
f2(b), if z = yb for some b ∈ B.

Notice that F is well-defined, that (F ◦ i1)(a) = F (i1(a)) = f1(xa) = a for all

a ∈ A and that (F ◦ i2)(b) = F (i2(b)) = f2(yb) = b for all b ∈ B. This justifies

that the triple (A ⊔B, i1, i2) is, in fact, the coproduct of the objects A and B

in the category of sets.

The following proposition formalizes the fact that coproducts are also unique

up to isomorphism, meaning that any two coproducts of the same pair of

objects are essentially the same in a categorical sense.

Proposition 1.2.18. Let C be a category, and let A and B be objects of C. If

(C, i1, i2) and (C ′, i′1, i
′
2) are two coproducts of A and B, then C is isomorphic

to C ′.

Proof. First, recall from the construction of (C, i1, i2) that i1 ∈ Hom(A,C)

and i2 ∈ Hom(B,C). Then, recall from the defining property of (C ′, i′1, i
′
2),

that there exists a unique morphism I ′ : C → C ′ such that I ′ ◦ i1 = i′1 and

I ′ ◦ i2 = i′2.

Similarly, by switching C and C ′, we see that there exists a unique morphism

I : C ′ → C such that I ◦ i′1 = i1 and I ◦ i′2 = i2. Hence, (I ◦ I ′) : C → C is a

morphism such that:

(I ◦ I ′) ◦ i1 = I ◦ (I ′ ◦ i1) = I ◦ i′1 = i1

and

(I ◦ I ′) ◦ i2 = I ◦ (I ′ ◦ i2) = I ◦ i′2 = i2.

Further, recall from the construction of (C, i1, i2) that i1 ∈ Hom(A,C) and

i2 ∈ Hom(B,C). Then, recall from the defining property of (C, i1, i2) itself,

that there exists a unique morphism ϕ : C → C such that ϕ ◦ i1 = i1 and

ϕ ◦ i2 = i2. Since ϕ = idC satisfies these conditions and, as we have shown
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above, ϕ = I ◦ I ′ also satisfies these conditions, we conclude that I ◦ I ′ = idC .

Thus, I ′ : C → C ′ and I : C ′ → C are isomorphisms. □

In the proposition above, we showed that coproducts are unique, when they

exist. However, not all categories have coproducts for every pair of objects.

In the next example, we will see a simple category where the coproduct of two

objects does not exist.

Example 1.2.19. Consider a category C with three objects, Obj = {A,B,C},
and five morphisms, Mor = {idA, idB, idC , f, g}, where f ∈ Hom(B,A) and

g ∈ Hom(B,C). A diagrammatic picture of this category is the following:

A B C
f g

idA idB idC

In this case, the coproduct of the objects A and C does not exist. In fact,

there exists no object X in C such that Hom(A,X) and Hom(C,X) are simul-

taneously non-empty:

Hom(C,A) = ∅, Hom(A,B) = Hom(C,B) = ∅ and Hom(A,C) = ∅.

Notice that in Definition 1.2.15 we have defined the coproduct of two ob-

jects in an abstract category. However, one can define, in a similar way, the

coproduct of any family of objects. Specifically, if {Aj}j∈J is a family of ob-

jects in a category C (J being its indexing set), then its coproduct is an object

C ∈ Obj, together with a family of morphisms {ιj}j∈J satisfying the following

properties:

• ιj : Aj → C for each j ∈ J ,

• For any object X ∈ Obj for which a family of morphisms {fj : Aj →
X}j∈J exists, there exists also a unique morphism F : C → X such that

F ◦ ιj = fj for all j ∈ J .

In particular, in the case where the index set J is empty, we have the

following result:

Proposition 1.2.20. Let C be a category. If the coproduct of an empty family

of objects in C exists, then it is an initial object of C.
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Proof. By definition, the empty coproduct is an object C such that for any

object X, there exists a unique morphism F : C → X. Therefore, if the empty

coproduct exists, it must be an initial object of C. □

1.3. Preadditive categories

Preadditive categories are categories for which the hom-sets are equipped

with an abelian group structure (see Definition A.1). This structure allows for

the addition of morphisms. In this section, we will define preadditive categories

and explore their properties through concrete examples and propositions.

Definition 1.3.1. A category C is said to be preadditive when, for every pair

of objects A,B ∈ Obj, there exists a binary operation

+ : Hom(A,B)× Hom(A,B)→ Hom(A,B),

such that (Hom(A,B),+) is an abelian group and, moreover,

(f + f ′) ◦ g = f ◦ g + f ′ ◦ g and g ◦ (f + f ′) = g ◦ f + g ◦ f ′,

for all objects A,B,C,D ∈ Obj, all morphisms f, f ′ ∈ Hom(A,B), and all

morphisms g, g′ ∈ Hom(C,D).

Notice that if a category C is preadditive, then it is also locally small, since

Hom(A,B) must be a set for every pair of objects A,B ∈ Obj. Notice, more-

over, that if C is a preadditive category, then Hom(A,B) is non-empty for

every pair of objects A,B ∈ Obj.

To better understand the abstract definition of preadditive categories, we

will consider some concrete examples. We will start with the simplest possible

category and then explore more complex cases.

Example 1.3.2. Notice that the category with one object and one morphism

(constructed in Example 1.1.2) is preadditive. In fact, recall that this category

has only one object, Obj = {⋆} and only one morphism, Mor = {id⋆}. Hence,
in this case, the only group structure that the set Mor (with only one element)

admits is the trivial one, that is, id⋆+ id⋆ := id⋆. Thus, it is obvious that:

id⋆ ◦(id⋆+ id⋆) = id⋆ ◦ id⋆ = id⋆ = id⋆+ id⋆ = (id⋆ ◦ id⋆) + (id⋆ ◦ id⋆),

(id⋆+ id⋆) ◦ id⋆ = id⋆ ◦ id⋆ = id⋆ = id⋆+ id⋆ = (id⋆ ◦ id⋆) + (id⋆ ◦ id⋆).

This shows that the category constructed in Example 1.1.2 is, in fact, pread-

ditive.
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While the simplest category is preadditive, not all categories share this

property. In the next example, we will see that the category of sets is not

preadditive.

Example 1.3.3. Notice that the category of sets (see Example 1.1.3) is not

preadditive, as it is not locally small.

Similarly, other categories may fail to be preadditive due to the lack of

appropriate structure on their hom-sets. In the next example, we will see two

such categories.

Example 1.3.4. Notice that the category constructed in Example 1.2.8 and

the category constructed in Example 1.2.13 are not preadditive. In fact, in

the first case, Hom(A,B) = Hom(C,B) = ∅ are not groups, and in the second

case, Hom(B,A) = Hom(B,C) = ∅ are not groups.

Preadditive categories have several important properties that distinguish

them from general categories. The following proposition highlights some of

these properties, including the relationship between initial and terminal ob-

jects and the duality between products and coproducts.

Proposition 1.3.5. Let C be a preadditive category.

(a) An object of C is initial if and only if it is terminal.

(b) Let n be a non-negative integer and {A1, . . . , An} be a finite subset of

Obj. If the product of A1, . . . , An exists, then their coproduct also exists.

Moreover, in this case, the product of A1, . . . , An is isomorphic to their

coproduct.

(c) Let n be a non-negative integer and {A1, . . . , An} be a finite subset of

Obj. If the coproduct of A1, . . . , An exists, then their product also exists.

Moreover, in this case, the coproduct of A1, . . . , An is isomorphic to their

product.

Proof. We will prove each part of this proposition separately.

(a) Suppose I is an initial object in the category C. We want to prove that I

is also terminal, that is, we want to show that, for every object X in C,

the set Hom(X, I) contains exactly one morphism.

Let X be an object of C. Since C is assumed to be a preadditive

category, we know that Hom(X, I) is non-empty and, moreover, forms a
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group. Therefore, showing that Hom(X, I) contains exactly one element is

equivalent to showing that the only morphism in Hom(X, I) is the neutral

element of this group.

To prove this, observe that, since I is an initial object, the set Hom(I, I)

contains exactly one element, namely idI , which is the neutral element of

this group. Thus, for every f ∈ Hom(X, I), we have:

f = idI ◦f = (idI + idI) ◦ f = idI ◦f + idI ◦f = f + f.

This implies that f is, in fact, the neutral element of the group Hom(X, I).

Now, suppose T is a terminal object in the category C. We want to

show that T is also initial, that is, we want to show that, for every object

X in C, the set Hom(T,X) contains exactly one morphism.

Let X be an object of C. Since C is assumed to be a preadditive

category, we know that Hom(T,X) is non-empty and, moreover, forms a

group. Therefore, showing that Hom(T,X) contains exactly one element

is equivalent to showing that the only morphism in Hom(T,X) is the

neutral element of this group.

To prove this, observe that, since T is terminal, the set Hom(T, T )

contains exactly one element, namely idT , which is the neutral element of

this group. Thus, for every f ∈ Hom(T,X), we have:

f = f ◦ idT = f ◦ (idT + idT ) = f ◦ idT +f ◦ idT = f + f.

This implies that f is, in fact, the neutral element of the group Hom(T,X).

(b) For simplicity of notation, we will prove the case n = 2. The general case

follows analogously.

Let (P, p1, p2) be the product of A1 and A2. By definition, this means

that P ∈ Obj, p1 ∈ Hom(P,A1), p2 ∈ Hom(P,A2), and that, for every

triple (X, f1, f2) with X ∈ Obj, f1 ∈ Hom(X,A1), and f2 ∈ Hom(X,A2),

there exists a unique F ∈ Hom(X,P ) such that p1◦F = f1 and p2◦F = f2.

We will use this property to construct morphisms ι1 ∈ Hom(A1, P ) and

ι2 ∈ Hom(A2, P ) such that (P, ι1, ι2) is the coproduct of A1 and A2.

To construct ι1 and ι2, we also use the hypothesis that C is a preadditive

category. In fact, it is this hypothesis that allows us to choose neutral

elements 01,2 ∈ Hom(A1, A2) and 02,1 ∈ Hom(A2, A1). Then, for the triple

(A1, idA1 , 01,2), there exists a unique morphism ι1 ∈ Hom(A1, P ) such that

p1 ◦ ι1 = idA1 and p2 ◦ ι1 = 01,2.
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Similarly, for the triple (A2, 02,1, idA2), there exists a unique morphism

ι2 ∈ Hom(A2, P ) such that

p1 ◦ ι2 = 02,1 and p2 ◦ ι2 = idA2 .

To complete the proof of this part, we will show that (P, ι1, ι2) is the

coproduct of A1 and A2. To do this, let X be an object in Obj, let f1 be

a morphism in Hom(A1, X), and let f2 be a morphism in Hom(A2, X).

The morphism F ∈ Hom(P,X) such that F ◦ ι1 = f1 and F ◦ ι2 = f2 is

explicitly given by F = (f1 ◦ p1) + (f2 ◦ p2). In fact,

F ◦ ι1 = ((f1 ◦ p1) + (f2 ◦ p2)) ◦ ι1
= (f1 ◦ p1) ◦ ι1 + (f2 ◦ p2) ◦ ι1
= f1 ◦ (p1 ◦ ι1) + f2 ◦ (p2 ◦ ι1)
= f1 ◦ idA1 +f2 ◦ 01,2
= f1

and

F ◦ ι2 = ((f1 ◦ p1) + (f2 ◦ p2)) ◦ ι2
= (f1 ◦ p1) ◦ ι2 + (f2 ◦ p2) ◦ ι2
= f1 ◦ (p1 ◦ ι2) + f2 ◦ (p2 ◦ ι2)
= f1 ◦ 02,1 + f2 ◦ idA2

= f2.

This shows that (P, ι1, ι2) is the coproduct of A1 and A2, and completes

the proof of this part.

(c) Again, for simplicity of notation, we will prove the case n = 2, since the

general case is completely analogously.

Let (C, i1, i2) be the coproduct of A1 and A2. By definition, this means

that C ∈ Obj, i1 ∈ Hom(A1, C), i2 ∈ Hom(A2, C), and that for every

triple (X, f1, f2) with X ∈ Obj, f1 ∈ Hom(A1, X), and f2 ∈ Hom(A2, X),

there exists a unique morphism F ∈ Hom(C,X) such that F ◦ i1 = f1
and F ◦ i2 = f2. We will use this property to construct morphisms p1 ∈
Hom(C,A1) and p2 ∈ Hom(C,A2) such that (C, p1, p2) is the product of

A1 and A2.

To construct p1 and p2, we also use the hypothesis that C is a preadditive

category. In fact, it is this hypothesis that allows us to choose neutral
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elements 01,2 ∈ Hom(A1, A2) and 02,1 ∈ Hom(A2, A1). Then, for the triple

(A1, 02,1, idA1), there exists a unique morphism p1 ∈ Hom(C,A1) such that

p1 ◦ i1 = idA1 and p1 ◦ i2 = 02,1.

Similarly, for the triple (A2, idA2 , 01,2), there exists a unique morphism

p2 ∈ Hom(C,A2) such that

p2 ◦ i1 = 01,2 and p2 ◦ i2 = idA2 .

To complete the proof, we will show that (C, p1, p2) is the product of

A1 and A2. To do this, let X be an object in Obj, let f1 be a morphism

in Hom(X,A1), and let f2 be a morphism in Hom(X,A2). The morphism

F ∈ Hom(X,C) such that p1 ◦ F = f1 and p2 ◦ F = f2 is explicitly given

by F = (i1 ◦ f1) + (i2 ◦ f2). In fact,

p1 ◦ F = p1 ◦ ((i1 ◦ f1) + (i2 ◦ f2))
= p1 ◦ (i1 ◦ f1) + p1 ◦ (i2 ◦ f2)
= (p1 ◦ i1) ◦ f1 + (p1 ◦ i2) ◦ f2
= idA1 ◦f1 + 02,1 ◦ f2
= f1

and

p2 ◦ F = p2 ◦ ((i1 ◦ f1) + (i2 ◦ f2))
= p2 ◦ (i1 ◦ f1) + p2 ◦ (i2 ◦ f2)
= (p2 ◦ i1) ◦ f1 + (p2 ◦ i2) ◦ f2
= 01,2 ◦ f1 + idA2 ◦f2
= f2.

This shows that (C, p1, p2) is the product of A1 and A2. □

1.4. Additive categories

Additive categories are a natural generalization of preadditive categories,

providing a framework for studying categories with additional structure, such

as finite products and coproducts. In this section, we will define additive

categories and explore their properties through concrete examples.

Definition 1.4.1. A category C is said to be additive when:

(i) C is a preadditive category,
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(ii) there exists an initial or a terminal object in Obj,

(iii) for every pair of objects A,B ∈ Obj, their product or their coproduct

exists within C.

Recall from Proposition 1.3.5(a) that, in a preadditive category, an object is

initial if and only if it is terminal. This explains the or in condition (ii) above.

Then, recall from Proposition 1.3.5(b) and (c) that, in a preadditive category,

the product of two objects exists if and only if their coproduct exists. This

explains the or in condition (iii) above.

Further, recall from Proposition 1.2.14 that (in any category) the empty

product is a terminal object and from Proposition 1.2.20 that the empty co-

product is an initial object. Thus, one could condense conditions (ii) and (iii)

above in one condition that requires every finitary product to exist within C.

To better understand the abstract definition of additive categories, we will

consider some concrete examples. We will start with the simplest possible

category and then explore more complex cases.

Example 1.4.2. The category with one object and one morphism (constructed

in Example 1.1.2) is additive. In fact, recall from Example 1.3.2 that this cate-

gory is preadditive. Further, recall from Example 1.2.5 that the unique object

in this category is initial and terminal. Finally, recall from Example 1.2.10

that product of this object with itself is itself and from Example 1.2.16 that

the coproduct of this object with itself is itself. This justifies that the category

with one object and one morphism is additive.

While the simplest category is additive, not all categories share this property.

In the next example, we will see that the category of sets is not additive because

it is not even preadditive.

Example 1.4.3. Recall from Example 1.3.3 that the category of sets is not

preadditive. Thus, it cannot be an additive category.

Not all preadditive categories are additive. In the next example, we will

construct a category that is preadditive but fails to be additive due to the lack

of an initial or terminal object.

Example 1.4.4. Now we will construct a category that is preadditive and not

additive. First, let Obj consist of a unique element, Obj = {⋆}, Mor (which
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is the same as Hom(⋆, ⋆)) consist of two morphisms, Mor = {id⋆, f}, and the

composition be given by

id⋆ ◦ id⋆ = id⋆, id⋆ ◦f = f ◦ id⋆ = f and f ◦ f = f.

Then, endow Hom(⋆, ⋆) with the structure of the abelian group Z2:

id⋆+ id⋆ = f, id⋆+f = f + id⋆ = id⋆ and f + f = f.

Now, we check that this category is preadditive:

(id⋆+ id⋆) ◦ id⋆ = f ◦ id⋆ = f = id⋆+ id⋆ = (id⋆ ◦ id⋆) + (id⋆ ◦ id⋆),

(id⋆+ id⋆) ◦ f = f ◦ f = f = f + f = (id⋆ ◦f) + (id⋆ ◦f),
(id⋆+f) ◦ id⋆ = id⋆ ◦ id⋆ = id⋆ = id⋆+f = (id⋆ ◦ id⋆) + (f ◦ id⋆),

(id⋆+f) ◦ f = id⋆ ◦f = f = f + f = (id⋆ ◦f) + (f ◦ f),
(f + f) ◦ id⋆ = f ◦ id⋆ = f = f + f = (f ◦ id⋆) + (f ◦ id⋆),

(f + f) ◦ f = f ◦ f = f = f + f = (f ◦ f) + (f ◦ f).

Notice that what these calculations show is that the triple (Mor,+, ◦) is in fact

a ring. Namely, a ring isomorphic to Z2 (with the isomorphism being given by

0 7→ f and 1 7→ id⋆).

To complete this example, notice the only object in this category, ⋆, is not

initial (nor terminal), because Hom(⋆, ⋆) contains two morphisms.

1.5. Constructions in categories II

1.5.1. Equalizers. In category theory, the concept of equalizer is used to

formalize the idea of commonality between two morphisms. More specifically,

it provides a way to characterize the universal object through which both

morphisms agree.

Definition 1.5.1. Given a category C, two objects A,B ∈ Obj, and two

morphisms f, g ∈ Hom(A,B), the equalizer of f and g is a pair (E, e) where:

(i) E ∈ Obj,

(ii) e ∈ Hom(E,A),

(iii) f ◦ e = g ◦ e,

(iv) for every object X ∈ Obj and morphism h ∈ Hom(X,A) such that f ◦h =

g ◦ h, there exists a unique morphism u : X → E such that e ◦ u = h.
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This first example of equalizer illustrates how the definition of equalizer

applies to the situation where we have two equal morphisms, and shows how

the equalizer is realized concretely as the domain of this morphism.

Example 1.5.2. Let C be a category, let A and B be two objects in Obj, and

let f ∈ Hom(A,B) be a morphism. The equalizer of f and itself is the pair

(A, idA). To justify this claim, notice that:

(i) A ∈ Obj,

(ii) idA ∈ Hom(A,A),

(iii) f ◦ idA = f ◦ idA,

(iv) for every object X ∈ Obj and every morphism h ∈ Hom(X,A) (such that

f ◦ h = f ◦ h), the morphism u = h is the only morphism in Hom(X,A)

such that idA ◦u = h.

In the next example, we will construct the equalizer of two functions in the

category of sets (see Example 1.1.3). In this case, the equalizer is realized as

the largest subset in which these two functions agree.

Example 1.5.3. Let A,B be two sets, and let f, g : A→ B be two functions.

The equalizer of f and g is the pair (E, e), where E is the set defined by

E := {a ∈ A | f(a) = g(a)},

and e is the inclusion of E into A, that is, the function

e : E → A defined by e(x) = x for all x ∈ E.

To justify this claim, notice that:

(i) E is a subset of A, that is, an object of the category of sets,

(ii) e is a function, that is, a morphism in the category of sets,

(iii) for every x ∈ E, we have f(e(x)) = f(x) = g(x) = g(e(x)),

(iv) for every set X and every function h : X → A such that f ◦ h = g ◦ h,
notice that h(x) ∈ E for all x ∈ X (since f(h(x)) = g(h(x))). Hence, if

one chooses u : X → E to be defined by u(x) = h(x), then one obtains

that e(u(x)) = e(h(x)) = h(x) for all x ∈ X.

With these concrete examples in hand, we now turn to a key result: the

uniqueness (up to isomorphism) of equalizers when they exist. That is, the
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next result establishes that any two equalizers of a given pair of morphisms

are isomorphic.

Proposition 1.5.4. Let C be a category, A,B be two objects in Obj, and f, g

be two morphisms in Hom(A,B). If (E, e) and (E ′, e′) are equalizers of f and

g in C, then E is isomorphic to E ′.

Proof. From the definition of equalizers and the hypothesis that (E, e) and

(E ′, e′) are equalizers of f and g, we know that E and E ′ are objects of C, that

e is a morphism in Hom(E,A) such that e◦f = e◦g, and that e′ is a morphism

in Hom(E ′, A) such that e′ ◦ f = e′ ◦ g. Moreover, since (E, e) and (E ′, e′)

are equalizers of f and g, there exist unique morphisms u ∈ Hom(E,E ′) and

u′ ∈ Hom(E ′, E) such that e ◦ u = e′ and e′ ◦ u′ = e. We will show that u and

u′ are isomorphisms.

To do this, we begin by substituting the equations into each other:

e′ = e ◦ u = (e′ ◦ u′) ◦ u = e′ ◦ (u′ ◦ u),
e = e′ ◦ u′ = (e ◦ u) ◦ u′ = e ◦ (u ◦ u′).

To complete this proof, we will show that u′ ◦ u = idE and u ◦ u′ = idE′ . In

fact, since (E, e) is an equalizer of f and g, there exists a unique morphism

v ∈ Hom(E,E) such that e ◦ v = e. Since v = u ◦ u′ and v = idE satisfy

this condition, it follows that u ◦ u′ = idE. Similarly, since (E ′, e′) is an

equalizer of f and g, there exists a unique morphism v′ ∈ Hom(E ′, E ′) such

that e′ ◦ v′ = e′. Since v′ = u′ ◦u and v′ = idE′ satisfy this condition, it follows

that u′ ◦ u = idE′ . □

The previous proposition guarantees the uniqueness of equalizers up to iso-

morphism, but it is important to note that equalizers do not always exist. We

finish this subsection with an example that illustrates a situation in which the

equalizer does not exist.

Example 1.5.5. Consider a category with two objects, Obj = {A,B}, and
four morphisms, Mor = {idA, f, g, idB}, where

{idA} = Hom(A,A), {f, g} = Hom(A,B) and {idB} = Hom(B,B).

A diagrammatic picture of this category is the following:
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A BidA

f

g
idB

Now, we will show that no equalizer of f and g exists. In fact, if this

equalizer (E, e) existed, then E would have to be an object in Obj = {A,B}
and e would have to be a morphism in Hom(E,A) such that f ◦ e = g ◦ e.
Since Hom(B,A) = ∅, then E would have to be A and e would have to be idA.

However, f ◦ idA ̸= g ◦ idA. This explains why no equalizer of f and g exists.

(See Example 1.5.7 for a more subtle situation in which morphisms have no

equalizers.)

1.5.2. Kernels. In a preadditive category, kernels are a special case of equal-

izers. They formalize the idea of the “preimage of zero” for a morphism. More

specifically, kernels provide a way to characterize the universal object that

maps to zero under a given morphism.

Definition 1.5.6. Given a preadditive category C, two objects A,B ∈ Obj,

and a morphism f ∈ Hom(A,B), the kernel of f is defined to be the equalizer

of f and the zero morphism in the abelian group Hom(A,B).

In a more explicit way, the kernel of a morphism f ∈ Hom(A,B) is an

object ker(f) ∈ Obj together with a morphism k ∈ Hom(ker(f), A) satisfying

the following conditions:

• f ◦ k = 0 ◦ k = 0 in the abelian group Hom(ker(f), B),

• for every pair (X, h), where X is an object of C and h ∈ Hom(X,A) is

a morphism satisfying f ◦ h = 0 ∈ Hom(X,B), there exists a unique

morphism u ∈ Hom(X, ker(f)) such that k ◦ u = h.

It is important to note that the condition that C is preadditive is essential

in Definition 1.5.6. Without the ability to define zero morphisms, the concept

of a kernel cannot be formulated. For example, kernels cannot be defined in

the category of sets, as it is not preadditive (see Example 1.3.3).

Additionally, since equalizers are unique up to isomorphism (see Proposi-

tion 1.5.4), kernels are also unique up to isomorphism.

In the following examples, we present cases where kernels do and do not

exist.
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Example 1.5.7. Consider a category C with one object, Obj = {⋆}. Recall

from Example 1.4.4 that, in this case, for C to be a preadditive category,

one must endow Mor (which is equal to Hom(⋆, ⋆)) with a ring structure,

(Mor,+, ◦). In this example, we will choose the ring Z2 × Z2. That is, Mor

will have four elements,

Mor = Hom(⋆, ⋆) =
{
(0, 0), (0, 1), (1, 0), (1, 1)

}
,

its addition will be given by component-wise addition modulo 2, and its com-

position will be given by component-wise multiplication modulo 2.

Now we will show that the kernel of the morphism (0, 1) does not exist.

In fact, recall that the kernel of (0, 1) is a pair (K, k), where K ∈ Obj and

k ∈ Hom(K, ⋆) such that (0, 1) ◦ k = (0, 0). Since Obj = {⋆}, then K = ⋆;

and, since

(0, 1)◦ (0, 0) = (0, 1)◦ (1, 0) = (0, 0) and (0, 1)◦ (0, 1) = (0, 1)◦ (1, 1) = (0, 1),

then k = (0, 0) or k = (1, 0).

To justify that the pair (⋆, (0, 0)) is not the kernel of (0, 1), notice that, if

we take the pair (X, h) = (⋆, (1, 0)), then (0, 1) ◦ h = (0, 0) but there exists

no morphism u ∈ Hom(⋆, ⋆) such that (0, 0) ◦ u = h. Now, to justify that

the pair (⋆, (1, 0)) is not the kernel of (0, 1), notice that, if we take the pair

(X, h) = (⋆, (0, 0)), then (0, 1) ◦ h = (0, 0) and there exist two morphisms

u ∈ Hom(⋆, ⋆) such that (1, 0) ◦ u = (0, 0), namely, u = (0, 0) and u = (0, 1).

This shows that the kernel of the morphism (0, 1) does not exist. Similarly,

one can show that there is no kernel for the morphism (1, 0) in this category.

In the previous example, we saw a situation where the kernel of a morphism

does not exist. In the next example, we turn to a more familiar setting: the

category of vector spaces, where kernels always exist and correspond to the

classical notion of the kernel of a linear map.

Example 1.5.8. Let k be a field (for example, R). Consider the category

whose objects are all k-vector spaces, whose morphisms are all linear trans-

formations between k-vector spaces, and whose composition is given by the

usual composition of linear transformations (or, equivalently, functions). One

can check that this structure forms a category, which is locally small.

One can also introduce a structure of abelian group on its hom-sets. Namely,

if V and W are k-vector spaces, then the set Hom(V,W ) is an abelian group
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when endowed with the function + : Hom(V,W )×Hom(V,W )→ Hom(V,W )

defined by

(T + S)(v) := T (v) + S(v) ∈ W for all T, S ∈ Hom(V,W ).

Thus, the morphism 0 ∈ Hom(V,W ) is explicitly given by 0(v) = oW for all

v ∈ V .

Hence, the kernel of a morphism T ∈ Hom(V,W ) is the pair (ker(T ), k),

where:

• ker(T ) is the usual kernel of linear transformations,

ker(T ) = {v ∈ V | T (v) = oW},

• k is the inclusion of ker(T ) into V ,

k : ker(T )→ V explicitly given by k(v) = v.

In fact, since ker(T ) is a vector subspace of V , it is also a k-vector space.

Moreover, k is a k-linear transformation, since

k(v1 + λv2) = v1 + λv2 = k(v1) + λk(v2).

Finally, if (X, h) is a pair where X is a k-vector space and h : X → V is

a k-linear transformation such that T ◦ h = 0, then h(x) ∈ ker(T ) for all

x ∈ X. This implies that the inclusion u : X → ker(T ) is the unique linear

transformation that satisfies k ◦ u = h.

1.5.3. Coequalizers. In category theory, the concept of coequalizer formal-

izes the idea of identifying elements mapped to the same place by two mor-

phisms. It achieves this by defining a universal object which enforces this

identification.

Definition 1.5.9. Given a category C, two objects A,B ∈ Obj, and two

morphisms f, g ∈ Hom(A,B), the coequalizer of f and g is a pair (Q, q) where:

(i) Q ∈ Obj,

(ii) q ∈ Hom(B,Q),

(iii) q ◦ f = q ◦ g,

(iv) for every object X ∈ Obj and morphism k ∈ Hom(B,X) such that k◦f =

k ◦ g, there exists a unique morphism v ∈ Hom(Q,X) such that v ◦ q = k.
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The first example of a coequalizer will illustrate how the definition of a

coequalizer applies in the case where the two morphisms are equal. In this

case the coequalizer is realized concretely as the codomain of this morphism.

Example 1.5.10. Let C be a category, let A and B be two objects in Obj,

and let f ∈ Hom(A,B) be a morphism. The coequalizer of f and itself is the

pair (B, idB). To justify this claim, notice that:

(i) B ∈ Obj,

(ii) idB ∈ Hom(B,B),

(iii) idB ◦f = idB ◦f ,

(iv) for every object X ∈ Obj and every morphism k ∈ Hom(B,X) (such that

k ◦ f = k ◦ f), the morphism v = k is the only morphism in Hom(B,X)

such that v ◦ idB = k.

In the next example, we will construct the coequalizer of two functions in

the category of sets (see Example 1.1.3). Here, the coequalizer corresponds to

the quotient set that identifies elements that map to the same element under

these two functions.

Example 1.5.11. Let A,B be two sets and let f, g : A→ B be two functions.

To construct the coequalizer of f and g, consider the equivalence relation in

B generated by f(a) ∼ g(a) for all a ∈ A. That is:

• for every b ∈ B, we have b ∼ b,

• if b = f(a) ∼ g(a) = b′ for some a ∈ A, then b′ = g(a) ∼ f(a) = b,

• if b = f(a) ∼ g(a) = b′ for some a ∈ A and b′ = f(a′) ∼ g(a′) = b′′ for

some a′ ∈ A, then b ∼ b′′.

Then, define Q to be the set of equivalence classes with respect to the equiva-

lence relation ∼. If we denote by [b] the equivalence class to which an element

b ∈ B belongs, then:

Q = {[b] | b ∈ B}.
Notice that Q is a set and that there exists a function

q : B → Q defined by q(b) = [b] for all b ∈ B.

The pair (Q, q) is the coequalizer of f and g.

To justify this claim, notice that:
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(i) Q is a quotient set of B, that is, an object of the category of sets,

(ii) q is a function, that is, a morphism in the category of sets,

(iii) since f(a) ∼ g(a) for every a ∈ A, we have

q(f(a)) = [f(a)] = [g(a)] = q(g(a)),

(iv) for every set X and every function k : B → X such that k ◦ f = k ◦ g, we
can define a function v : Q→ X by v([b]) = k(b). In fact, to justify that

this is a function, notice that, if [b] = [b′], then k(b) = k(b′). Moreover,

by definition, this function v satisfies v ◦ q = k. On the other hand, if

v ◦ q = k, then v([b]) = k(b) for all b ∈ B. This shows the uniqueness of

v.

Moving on from the concrete examples, we now prove a key result: the

uniqueness (up to isomorphism) of coequalizers when they exist. In other

words, this next result establishes that any two coequalizers of a given pair of

morphisms are isomorphic.

Proposition 1.5.12. Let C be a category, A,B be two objects in Obj, and

f, g be two morphisms in Hom(A,B). If (Q, q) and (Q′, q′) are coequalizers of

f and g, then Q is isomorphic to Q′.

Proof. From the definition of coequalizers and the hypothesis that (Q, q) and

(Q′, q′) are coequalizers of f and g, we know that Q and Q′ are objects of

C, that q is a morphism in Hom(B,Q) such that q ◦ f = q ◦ g, and that

q′ is a morphism in Hom(B,Q′) such that q′ ◦ f = q′ ◦ g. Moreover, since

(Q, q) and (Q′, q′) are coequalizers of f and g, there exist unique morphisms

v ∈ Hom(Q,Q′) and v′ ∈ Hom(Q′, Q) such that v ◦ q = q′ and v′ ◦ q′ = q. We

will show that v and v′ are isomorphisms.

To do this, we begin by substituting the equations above into each other:

q′ = v ◦ q = v ◦ (v′ ◦ q′) = (v ◦ v′) ◦ q′,
q = v′ ◦ q′ = v′ ◦ (v ◦ q) = (v′ ◦ v) ◦ q.

To complete this proof, we will show that v′ ◦ v = idQ and v ◦ v′ = idQ′ . In

fact, since (Q, q) is a coequalizer of f and g, there exists a unique morphism

w ∈ Hom(Q,Q) such that w ◦ q = q. Since w = v′ ◦ v and w = idQ satisfy this

condition, it follows that v′ ◦ v = idQ. Similarly, since (Q′, q′) is a coequalizer

of f and g, there exists a unique w′ ∈ Hom(Q′, Q′) such that w′ ◦q′ = q′. Since

w′ = v ◦v′ and w′ = idQ′ satisfy this condition, it follows that v ◦v′ = idQ′ . □
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The previous proposition guarantees the uniqueness of coequalizers up to

isomorphism, but it is important to note that coequalizers do not always exist.

We finish this subsection with an example that illustrates a situation in which

the coequalizer does not exist.

Example 1.5.13. Consider a category with two objects, Obj = {A,B}, and
four morphisms, Mor = {idA, f, g, idB}, where

{idA} = Hom(A,A), {f, g} = Hom(A,B) and {idB} = Hom(B,B).

A diagrammatic picture of this category is the following:

A BidA

f

g
idB

Now, we will show that no coequalizer of f and g exists. In fact, if this

coequalizer (Q, q) existed, then Q would have to be an object in Obj = {A,B}
and q would have to be a morphism in Hom(B,Q) such that q ◦ f = q ◦ g.
Since Hom(B,A) = ∅, then Q would have to be B and q would have to be idB.

However, idB ◦f ̸= idB ◦g. This explains why no coequalizer of f and g exists.

(See Example 1.5.15 for a more subtle situation in which morphisms have no

coequalizers.)

1.5.4. Cokernels. In a preadditive category, cokernels are a special case of

coequalizers. They formalize the idea of “quotient by the image” of a mor-

phism. More specifically, cokernels provide a way to characterize the universal

object that maps the image of a given morphism to zero.

Definition 1.5.14. Given a preadditive category C, two objects A,B ∈ Obj,

and a morphism f ∈ Hom(A,B), the cokernel of f is defined to be the co-

equalizer of f and the zero morphism in the abelian group Hom(A,B).

In a more explicit way, the cokernel of a morphism f ∈ Hom(A,B) is an

object coker(f) ∈ Obj together with a morphism q ∈ Hom(B, coker(f)) satis-

fying the following conditions:

• q ◦ f = q ◦ 0 = 0 in the abelian group Hom(A, coker(f)),

• for every pair (Y, h), where Y is an object of C and h ∈ Hom(B, Y ) is

a morphism satisfying h ◦ f = 0 ∈ Hom(A, Y ), there exists a unique

morphism v ∈ Hom(coker(f), Y ) such that v ◦ q = h.
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It is important to note that the condition that C is preadditive is also es-

sential in Definition 1.5.14. Without the ability to define zero morphisms, the

concept of a cokernel cannot be formulated. For example, cokernels cannot be

defined in the category of sets, as it is not preadditive (see Example 1.3.3).

Additionally, since coequalizers are unique up to isomorphism (see Proposi-

tion 1.5.12), cokernels are also unique up to isomorphism.

In the following examples, we present cases where cokernels do and do not

exist.

Example 1.5.15. Consider a category with one object, Obj = {⋆}, and with

Mor (which is equal to Hom(⋆, ⋆) in this case) endowed with a ring structure,

(Mor,+, ◦), isomorphic to Z2×Z2 (see Example 1.5.7 for the details). We will

show that the cokernel of the morphism (0, 1) does not exist in this category.

In fact, recall that the cokernel of (0, 1) is a pair (Q, q), where Q ∈ Obj and

q ∈ Hom(⋆,Q) such that q ◦ (0, 1) = (0, 0). Since Obj = {⋆}, then Q = ⋆; and,

since

(0, 0)◦ (0, 1) = (1, 0)◦ (0, 1) = (0, 0) and (0, 1)◦ (0, 1) = (1, 1)◦ (0, 1) = (0, 1),

then q = (0, 0) or q = (1, 0).

To justify that the pair (⋆, (0, 0)) is not the cokernel of (0, 1), notice that,

if we take the pair (Y, h) = (⋆, (1, 0)), then h ◦ (0, 1) = (0, 0) but there exists

no morphism v ∈ Hom(⋆, ⋆) such that v ◦ (0, 0) = (1, 0). Now, to justify

that the pair (⋆, (1, 0)) is not the cokernel of (0, 1), notice that, if we take the

pair (Y, h) = (⋆, (0, 0)), then h ◦ (0, 1) = (0, 0) and there exist two morphisms

v ∈ Hom(⋆, ⋆) such that v ◦ (1, 0) = (0, 0), namely, v = (0, 0) and v = (0, 1).

This shows that the cokernel of the morphism (0, 1) does not exist in this

category. Similarly, one can show that the morphism (1, 0) also has no cokernel

in this category.

In the previous example, we saw a situation where the cokernel of a mor-

phism does not exist. In the next example, we turn to a more familiar setting:

the category of vector spaces, where cokernels always exist and correspond to

the classical notion of the cokernel of a linear map.

Example 1.5.16. Let k be a field (for example, R) and consider the category

of k-vector spaces (constructed in Example 1.5.8). The cokernel of a morphism

T ∈ Hom(V,W ) is the pair (coker(T ), q), where:
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• coker(T ) is the usual cokernel of the linear transformation T , that is, the

quotient of the codomain of T by its image,

coker(T ) = W/ im(T );

• q is the canonical projection

q :W → coker(T ), explicitly given by q(w) = [w].

In fact, notice that, since im(T ) is a vector subspace of W , then coker(T ) is a

quotient vector space. Moreover, q is a k-linear transformation, since

q(w1 + λw2) = [w1 + λw2] = [w1] + λ[w2] = q(w1) + λq(w2).

Finally, if (X, k) is a pair where X is a k-vector space and k : W → X is a k-
linear transformation such that k ◦T = 0, then k factors through coker(T ), as

im(T ) is in its kernel. Thus, the isomorphism theorems from Linear Algebra

imply that there exists a unique linear transformation v : coker(T ) → X

satisfying v ◦ q = k.

1.6. Pre-abelian categories

In this section, we will introduce pre-abelian categories, which are an inter-

mediate step between additive and abelian categories.

Definition 1.6.1. A category C is said to be pre-abelian if C is an additive

category in which the kernel and cokernel of all morphisms exist.

To define pre-abelian categories in more detail, recall that an additive cate-

gory is defined as a pre-additive category in which finite products or coproducts

of its objects (including the empty ones) exist. Then, recall that a pre-additive

category is defined as a category in which Hom(A,B) admits the structure of

an abelian group for every pair of objects A,B. Hence, a pre-abelian category

is a locally small category for which:

• Hom(A,B) admits the structure of an abelian group for every pair of

objects A,B in C;

• finite products and coproducts of objects in C exist;

• the kernel and cokernel of every morphism in C exist.

In the next example, we will show that the category of vector spaces over a

field (defined in Example 1.5.8) is pre-abelian. This example illustrates how

pre-abelian categories naturally arise in familiar algebraic settings.
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Example 1.6.2. Let k be a field, and let C be the category of k-vector spaces.
Recall from Example 1.5.8 that C is an additive category. Also recall from

Example 1.5.8 that the kernel of a morphism in C is the usual kernel of this

morphism, viewed as a linear transformation (as defined in an undergraduate

Linear Algebra class). Then, recall from Example 1.5.16 that the cokernel of a

morphism (that is, a linear transformation) T ∈ Hom(V,W ) is the pair (Q, q),

where Q = W/ im(T ) and q is the canonical projection q : W → Q, explicitly

given by q(w) = w + im(T ). This shows that the category of k-vector spaces
is a pre-abelian category.

In the previous example, we showed a very concrete case of a pre-abelian

category. However, not all additive categories are pre-abelian. In the next ex-

ample, we will exhibit an additive category that fails to be pre-abelian because

it lacks kernels and cokernels for certain morphisms.

Example 1.6.3. Consider the category with one object, Obj = {⋆}, and

whose morphisms, Mor = Hom(⋆, ⋆), are identified with the ring Z2 × Z2.

This category was constructed in detail in Example 1.5.7, where it was also

shown to be additive.

Since Hom(⋆, ⋆) is identified with Z2×Z2, we can denote the morphisms in

Hom(⋆, ⋆) by (0, 0), (0, 1), (1, 0), and (1, 1). In Example 1.5.7, it was shown

that the kernel of the morphism (0, 1) does not exist, and in Example 1.5.15, it

was shown that the cokernel of the morphism (1, 0) also does not exist. Thus,

this category is not pre-abelian.

1.7. Constructions in categories III

Monomorphisms and epimorphisms are categorical generalizations of injec-

tive and surjective maps, respectively. To extend these notions from sets and

vector spaces to general categories, one relies on the “left cancellability”, and

respectively “right cancellability”, properties of these functions. In this sec-

tion, we define these concepts and provide concrete examples.

1.7.1. Monomorphisms. In this section, we begin with the abstract defini-

tion of monomorphisms and then provide concrete examples to illustrate it.

Definition 1.7.1. Given a category C and two of its objects A and B, a

morphism f ∈ Hom(A,B) is said to be monic (or a monomorphism) when,
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for every object X of C and every pair of morphisms g1, g2 ∈ Hom(X,A), we

have: f ◦ g1 = f ◦ g2 if and only if g1 = g2.

To illustrate the abstract definition above, we begin by showing that monic

morphisms in the category of sets are nothing more than injective maps.

Example 1.7.2. If C is the category of sets (see Example 1.1.3), then a mor-

phism (that is, a function) f : A→ B is monic if and only if f is injective.

To show this, we begin by assuming that f is an injective map. Now, let

X be any set, and let g1, g2 : X → A be functions such that f ◦ g1 = f ◦ g2.
This means that, f(g1(x)) = f(g2(x)) for all x ∈ X. Since f is injective, this

implies that g1(x) = g2(x) for all x ∈ X. This shows that g1 = g2.

Now, to show the converse, assume that f is monic. To show that f is an

injective function, let a1, a2 ∈ A be two elements such that f(a1) = f(a2).

We will show that a1 = a2. In fact, consider a set X with only one element,

X = {x}, and define the maps g1, g2 : X → A by g1(x) = a1 and g2(x) = a2.

Then, by construction, f ◦ g1 = f ◦ g2. Now, since f is assumed to be monic,

we have that g1 = g2. This implies a1 = g1(x) = g2(x) = a2.

Now, we will show general examples of monic morphisms that we already

considered in previous sections. We begin with isomorphisms.

Example 1.7.3. Let C be a category, A and B be two objects of C. We want

to show that, if f ∈ Hom(A,B) is an isomorphism, then it is monic. In fact,

recall from Definition 1.2.1 that, if f is an isomorphism, then there exists a

morphism g ∈ Hom(B,A) such that g ◦ f = idA. Hence, if X is an object of

C and g1, g2 ∈ Hom(X,A) are morphisms such that f ◦ g1 = f ◦ g2, then:

g1 = idA ◦g1 = (g◦f)◦g1 = g◦(f ◦g1) = g◦(f ◦g2) = (g◦f)◦g2 = idA ◦g1 = g2.

This shows that f is monic.

In the next example, we consider equalizers of morphisms. In fact, we will

show how the morphism in the equalizer pair is a monomorphism.

Example 1.7.4. Let C be a category, and let A and B be two objects of C.

Let f1, f2 : A→ B be two morphisms, and let (E, e) be the equalizer of f1 and

f2. Then, e : E → A is a monomorphism. To justify this claim, let X be any

object, and let g1, g2 : X → E be morphisms such that e ◦ g1 = e ◦ g2. Since e
is the equalizer of f1 and f2, we have:

f1 ◦ (e ◦ g2) = (f1 ◦ e) ◦ g2 = (f2 ◦ e) ◦ g2 = f2 ◦ (e ◦ g2).
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Hence, X is an object of C and h = (e ◦ g2) is a morphism in Hom(X,A)

such that f1 ◦ h = f2 ◦ h. By the universal property of the equalizer (see

Definition 1.5.1), there exists a unique morphism u : X → E such that e ◦u =

h. Since e ◦ g1 = h = e ◦ g2, it follows that g1 = u = g2. This shows that e is

a monomorphism.

To finish this section, we will determine which morphisms are monic and

which are not monic in a small pre-additive category.

Example 1.7.5. Consider a category C with a unique object, Obj = {⋆}.
Recall from Example 1.4.4 that a pre-additive structure on C is equivalent to

a ring structure on Mor = Hom(⋆, ⋆). In this case, a morphism in Hom(⋆, ⋆)

is monic if and only if it is not a left zero-divisor in the ring Hom(⋆, ⋆).

We will actually show that a morphism f ∈ Hom(⋆, ⋆) is not monic if and

only if it is a left zero-divisor in Hom(⋆, ⋆). To begin, assume that f is not

monic. This means that there exist distinct morphisms g1, g2 ∈ Hom(⋆, ⋆) such

that f ◦g1 = f ◦g2. Since Hom(⋆, ⋆) is a ring, this means that f ◦(g1−g2) = 0;

that is, that f is a left zero-divisor. On the other hand, if f is a left zero-divisor

in Hom(⋆, ⋆), then there exists a morphism g ∈ Hom(⋆, ⋆) such that g ̸= 0 and

f ◦ g = 0. Since f ◦ 0 = 0 = f ◦ g and g ̸= 0, this implies that f is not a

monomorphism.

1.7.2. Epimorphisms. In this section, we will begin with the abstract defi-

nition of epimorphisms and then provide concrete examples to illustrate it.

Definition 1.7.6. Given a category C and two of its objects A and B, a

morphism f ∈ Hom(A,B) is said to be an epimorphism when, for every object

Y of C and every pair of morphisms g1, g2 ∈ Hom(B, Y ), we have: g1◦f = g2◦f
if and only if g1 = g2.

To illustrate the abstract definition above, we begin by showing that epi-

morphisms in the category of sets are nothing more than surjective maps.

Example 1.7.7. If C is the category of sets (see Example 1.1.3), then a mor-

phism (that is, a function) f : A→ B is epi if and only if f is surjective.

To show this, we begin by assuming that f is a surjective map. Now, let Y

be any set, and let g1, g2 : B → Y be functions such that g1 ◦ f = g2 ◦ f . This
means that, for all a ∈ A, g1(f(a)) = g2(f(a)). Since f is surjective, every

b ∈ B can be written as b = f(a) for some a ∈ A. Thus, g1(b) = g2(b) for all

b ∈ B, which shows that g1 = g2.
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Now, to show the converse, assume that f is an epimorphism. Then, consider

the set Y = {0, 1} and the functions g1, g2 : B → Y defined by:

g1(b) = 1 for all b ∈ B and g2(b) =

{
0, if b /∈ im(f),

1, if b ∈ im(f).

Notice that Y is an object of C and g1, g2 are morphisms in Hom(B, Y ) such

that g1◦f = g2◦f . Since f is assumed to be an epimorphism, this implies that

g1 = g2; that is, every b ∈ B belongs to im(f). This show that f is surjective.

Now, we will show general examples of epimorphisms that we already con-

sidered in previous sections. We begin with isomorphisms.

Example 1.7.8. Let C be a category, and let A and B be two objects of C.

We want to show that, if f ∈ Hom(A,B) is an isomorphism, then it is also an

epimorphism. In fact, recall from Definition 1.2.1 that, if f is an isomorphism,

then there exists a morphism g ∈ Hom(B,A) such that f ◦g = idB. Hence, if Y

is an object of C and g1, g2 ∈ Hom(B, Y ) are morphisms such that g1◦f = g2◦f ,
then:

g1 = g1◦idB = g1◦(f ◦g) = (g1◦f)◦g = (g2◦f)◦g = g2◦(f ◦g) = g2◦idB = g2.

This shows that f is an epimorphism.

In the next example, we consider coequalizers of morphisms. In fact, we will

show how the morphism in the coequalizer pair is epi.

Example 1.7.9. Let C be a category, let A and B be two objects of C, let

f1, f2 : A→ B be two morphisms, and let (Q, q) be the coequalizer of f1 and

f2. Then, q : B → Q is an epimorphism. To justify this claim, let Y be an

object of C and g1, g2 : Q→ Y be morphisms such that g1 ◦ q = g2 ◦ q. Since
q is the coequalizer of f1 and f2, we have:

(g1 ◦ q) ◦ f1 = g1 ◦ (q ◦ f1) = g1 ◦ (q ◦ f2) = (g1 ◦ q) ◦ f2.

Hence, Y is an object of C and k := (g1 ◦ q) is a morphism in Hom(B, Y ) such

that k ◦ f1 = k ◦ f2. From the definition of coequalizer, Definition 1.5.9, there

exists a unique morphism v ∈ Hom(Q, Y ) such that (g1 ◦ q) = k = v ◦ q. Since
g1 ◦ q = g1 ◦ q, then g1 = v = g2. This shows that q is an epimorphism.

To finish this section, we will determine which morphisms are epi and which

are not epi in a small pre-additive category.



NOTES ON CATEGORY THEORY 37

Example 1.7.10. Consider a category C with a unique object, Obj = {⋆}.
Recall from Example 1.4.4 that a pre-additive structure on C is equivalent to

a ring structure on Mor = Hom(⋆, ⋆). In this case, a morphism in Hom(⋆, ⋆)

is epi if and only if it is not a right zero-divisor in the ring Hom(⋆, ⋆).

We will actually show that a morphism f ∈ Hom(⋆, ⋆) is not epi if and

only if it is a right zero-divisor in Hom(⋆, ⋆). To begin, assume that f is

not an epimorphism. This means that there exist g1, g2 ∈ Hom(⋆, ⋆) distinct

morphisms such that g1 ◦ f = g2 ◦ f . Since Hom(⋆, ⋆) is a ring, this means

that (g1 − g2) ◦ f = 0; that is, that f is a right zero-divisor. On the other

hand, if f is a right zero-divisor in Hom(⋆, ⋆), then there exists a morphism

g ∈ Hom(⋆, ⋆) such that g ̸= 0 and g ◦ f = 0. Since 0 ◦ f = 0 = g ◦ f and

g ̸= 0, this implies that f is not an epimorphism.

1.8. Abelian categories

Abelian categories are a central concept in homological algebra and category

theory. They provide a natural setting for studying exact sequences, homology,

and cohomology, as they generalize the properties of categories like vector

spaces and abelian groups. We will begin this section woth their abstract

definition and then illustrate it with concrete examples.

Definition 1.8.1. A category is said to be abelian when it is a pre-abelian

category, and moreover, every monomorphism is the kernel of a morphism and

every epimorphism is the cokernel of a morphism.

To define abelian categories in more detail, recall from Definition 1.6.1 that a

category is pre-abelian when it is additive and the kernel and cokernel of every

morphism exist. Then, recall from Definition 1.4.1 that a category is additive

when it is a pre-additive category in which finite products or coproducts of its

objects (including the empty ones) exist. Finally, recall from Definition 1.3.1

that a pre-additive category is one in which Hom(A,B) admits the structure

of an abelian group for every pair of objects A,B, and composition is bilinear.

Hence, an abelian category is a locally small category such that:

• Hom(A,B) admits a structure of an abelian group for every pair of objects

A,B in C;

• finite products and coproducts of objects in C exist;

• the kernel and cokernel of every morphism in C exist;
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• every monomorphism is the kernel of some morphism, and every epimor-

phism is the cokernel of some morphism.

To illustrate this abstract definition, we will consider some concrete exam-

ples. We begin with the down-to-earth example of vector spaces.

Example 1.8.2. For every field k, the category of k-vector spaces is abelian.
To begin justifying this, we recall from Example 1.6.2 that this category is

pre-abelian.

Moreover, to show that every monomorphism in this category is the kernel of

another morphism, notice that, if a morphism (that is, a linear transformation)

T : V → W is monic, then it is injective (compare with Example 1.7.2), and

hence V is isomorphic to im(T ), which is a vector subspace of W . Thus,

the pair (V, T ) is the kernel of the canonical projection q : W → W/ im(T ),

explicitly given by q(w) = w + im(T ). This shows that every monomorphism

in this category is the kernel of another morphism.

Finally, to show that every epimorphism is the cokernel of another mor-

phism, notice that, if a morphism T : V → W is epi, then it is surjective

(compare with Example 1.7.7). Hence, the Isomorphism Theorems imply that

the pair (W,T ) is (isomorphic to) the cokernel of the inclusion morphism

ι : ker(T )→ V , explicitly given by ι(v) = v.

Next, we consider the category of abelian groups, whose objects are abelian

groups and whose morphisms are group homomorphisms. This is a fundamen-

tal example of an abelian category. This example will also work as a review

of the concepts introduced so far.

Example 1.8.3. The category of abelian groups, usually denoted by Ab,

consists of abelian groups and their morphisms. More explicitly, the objects

of the category Ab are all abelian groups; the morphisms of Ab are all group

homomorphisms between abelian groups, that is, Hom(A,B) is the set of all

group homomorphisms A → B; and the composition of morphisms in Ab is

the usual composition of functions.

Recall (from Example A.12) that, if G, H, K are (abelian) groups and

f : G→ H, g : H → K are group homomorphisms, then the composition (g ◦
f) : G→ K is also a group homomorphism. Also recall (from Example A.12)

that, for every (abelian) group, the identity map is a group homomorphism.
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The pre-additive structure on the category Ab is given by the following

structure on the homomorphism sets: given two abelian groups, A and B, the

set Hom(A,B) is an abelian group under operation + defined by:

(f + g)(a) := f(a) +
B
g(a) for all f, g ∈ Hom(A,B) and a ∈ A

(where +
B
denotes the abelian group operation in B). Since B is an abelian

group, this operation + on Hom(A,B) is associative and commutative. More-

over, the identity element in Hom(A,B) is the trivial homomorphism A→ B,

that is, the function that maps every element in A to the identity element of

B. Hence, the opposite of a morphism f ∈ Hom(A,B) with respect to this

operation + is the morphism g : A → B defined by g(a) := −(f(a)) for all

a ∈ A. Finally, the fact that the composition of morphisms is bilinear follows

from the fact that:

((f + g) ◦ h)(a) = (f + g)(h(a))

= f(h(a)) + g(h(a))

= (f ◦ h)(a) + (g ◦ h)(a)

and

(f ◦ (g + h))(a) = f(g(a) + h(a))

= f(g(a)) + f(h(a))

= (f ◦ g)(a) + (f ◦ h)(a),

for all morphisms of abelian groups f, g ∈ Hom(A,B), h ∈ Hom(B,C), and

for all a ∈ A.

This shows that Ab is a pre-additive category. To verify that Ab is also an

additive category, recall from Definition 1.4.1 that it is enough to construct

an initial object within Ab and the product of two objects of Ab.

The initial object in Ab is the trivial group {0} (see Example A.6). Since

0 is the only element in this group, for every set A, a function f : {0} → A

is uniquely determined by the image of 0. Moreover, since 0 is the identity of

the group {0}, for f to be a group homomorphism, 0 must me mapped to the

identity of A. This explains why there exists a unique group homomorphism

from {0} to any other abelian group.

Now, the product of two abelian groups is constructed as follows. Given

two abelian groups, A and B, consider the Cartesian product

A×B = {(a, b) | a ∈ A, b ∈ B},
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equipped with component-wise addition, that is,

(a1, b1) + (a2, b2) := (a1 +A
a2, b1 +B

b2),

where +
A
denotes the group operation in A and +

B
denotes the group op-

eration in B. Since +
A
and +

B
are associative and commutative, then + is

also associative and commutative. Moreover, the identity element in A×B is

(0A, 0B) and the opposite of an element (a, b) ∈ A×B is the element (−a,−b).
Thus, A×B is an abelian group.

Then, consider the projection maps pA : A× B → A and pB : A× B → B,

given explicitly by

pA(a, b) := a and pB(a, b) := b for all (a, b) ∈ A×B.

The fact that pA and pB are group homomorphisms follows from the fact that

the operation + on A×B is defined component-wise:

pA((a1, b1) + (a2, b2)) = pA(a1 +A
a2, b1 +B

b2)

= a1 +A
a2

= pA(a1, b1) +A
pA(a2, b2)

and

pB((a1, b1) + (a2, b2)) = pB(a1 +A
a2, b1 +B

b2)

= b1 +B
b2

= pB(a1, b1) +B
pB(a2, b2).

Now, to show that the triple (A×B, pA, pB) is the product of A and B

in Ab, let X be an abelian group and let fA : X → A and fB : X → B be

group homomorphisms. Notice that the function F : X → A × B given by

F (x) = (fA(x), fB(x)) is well-defined and satisfies the conditions pA ◦ F = fA
and pB ◦ F = fB. Moreover, F is also a group homomorphism, since

F (x1 + x2) = (fA(x1 + x2), fB(x1 + x2))

= (fA(x1) +A
fA(x2), fB(x1) +B

fB(x2))

= (fA(x1), fB(x1)) + (fA(x2), fB(x2)) , for all x1, x2 ∈ X.

This explains why (A×B, pA, pB) is the product of A and B in Ab.
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This shows that Ab is an additive category. Now, to verify that Ab is also

pre-abelian, notice that the kernel of a morphism (that is, a group homomor-

phism) f : A→ B is the pair (K, k), where:

K = ker(f) := {a ∈ A | f(a) = eB}

and

k : K → A is defined by k(a) = a for all a ∈ K.

To justify this claim, recall from Proposition A.22 that the kernel of a group

homomorphism is a subgroup of its domain, and thus, an abelian group with

the inherited operation. Moreover, the function k is a group homomorphism,

since

k(a1 + a2) = a1 + a2 = k(a1) + k(a2) for all a1, a2 ∈ K,

that satisfies the condition f ◦ k = 0, since k(a) ∈ ker(f) for all a ∈ K.

To complete the justification of the claim that (K, k) is the kernel of f , let

X be an abelian group and h : X → A be a group homomorphism such that

f ◦ h = 0. Notice that this implies that im(h) ⊆ K. Hence, one can define a

function u : X → K by u(x) := h(x) for all x ∈ X. This function is a group

homomorphism, since

u(x1 + x2) = h(x1 + x2) = h(x1) + h(x2) = u(x1) + u(x2) for all x1, x2 ∈ X.

and moreover, it satisfies the condition k ◦ u = h (by construction). Further-

more, if u : X → K is a group homomorphism that satisfies k ◦ u = h, then

u(x) = k(u(x)) = h(x) for all x ∈ X. This explains why u is the unique

homomorphism of groups X → K that satisfies k ◦ u = h and completes the

proof that (K, k) is the kernel of f .

Further, to complete the verification that Ab is a pre-abelian category, we

will construct the cokernel of a morphism in Ab. Namely, the cokernel of a

morphism f : A→ B is the pair (Q, q) where:

Q = B/ im(f) and q : B → B/ im(f) is given by q(b) = b+ im(f).

To justify this claim, recall (from Proposition A.22) that, since f is a group

homomorphism, then im(f) is a subgroup of B, and since B is an abelian

group, then im(f) is a normal subgroup. Hence, the quotient B/ im(f) is a

group when endowed with the structure inherited from B (see Section A.5).
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Moreover, the function q is a group homomorphism, since

q(b1 + b2) = (b1 + b2) + im(f)

= (b1 + im(f)) + (b2 + im(f))

= q(b1) + q(b2), for all b1, b2 ∈ B,

that satisfies the condition q ◦ f = 0, since

q(b) = b+ im(f) = 0 + im(f) for all b ∈ im(f).

To complete the justification of the claim that (Q, q) is the cokernel of f ,

let Y be an abelian group and k : B → Y be a group homomorphism such

that k ◦ f = 0. Notice that this implies that im(f) ⊆ ker(k). Hence, one can

define a function v : Q → Y by v(b + im(f)) = k(b). Moreover, v is a group

homomorphism, since

v(b1 + b2 + im(f)) = k(b1 + b2)

= k(b1) + k(b2)

= v(b1 + im(f)) + v(b2 + im(f)), for all b1, b2 ∈ B,

that satisfies the condition v ◦ q = k, since v(q(b)) = v(b + im(f)) = k(b) for

all b ∈ B. This explains why (Q, q) is the cokernel of f .

This shows that Ab is a pre-abelian category. To finish this example, that

is, to finish showing that Ab is an abelian category, we will show that ev-

ery monomorphism in Ab is the kernel of another morphism and that every

epimorphism in Ab is the cokernel of another morphism.

To show that every monomorphism inAb is the kernel of another morphism,

notice that, if a morphism (that is, a group homomorphism) f : G → H is

monic, then it is injective (compare with Example 1.7.2). Hence, in this case,

G is isomorphic to im(f). Thus, the pair (G, f) is the kernel of the canonical

projection q : H → H/ im(f), explicitly given by q(h) = h+im(f). This shows

that every monomorphism in Ab is the kernel of another morphism.

Finally, to show that every epimorphism in Ab is the cokernel of another

morphism, notice that, if a morphism f : G → H is epi, then it is surjective

(compare with Example 1.7.7). Hence, the Isomorphism Theorems imply that

the pair (H, f) is (isomorphic to) the cokernel of the inclusion ι : ker(f)→ G,

explicitly given by ι(g) = g.

This shows that Ab is an abelian category and finishes this example.
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To finish this section and the first part of these notes, we will exhibit an

example of a pre-abelian category that fails to be abelian.

Example 1.8.4. Let C be the category defined as follows:

• The objects of C are the free abelian groups {0},Z,Z2, . . . ,Zn, . . .

• For two objects Zn and Zm of C, the morphisms in HomC(Zn,Zm) are

homomorphisms of groups Zn → Zm.

• The composition of morphisms is given by standard composition.

This is a pre-abelian category which is not an abelian category.

The fact that C is a small category follows from: the fact that Obj(C) is a

set in bijection with the set of natural numbers, the fact that HomC(Zn,Zm)

is a set in bijection with the set of m × n integral matrices (for every pair of

objects n,m ∈ Obj(C)), the fact that composition is associative, and the fact

that identity functions are the identity morphisms.

The preadditive structure on C is given by pointwise addition of group homo-

morphisms. In fact, since Z is an abelian group when endowed with its usual

addition (see Example A.2), for every pair of objects, Zn,Zm ∈ Obj(C), the

set of morphisms HomC(Zn,Zm) is also an abelian group when endowed with

addition defined point-by-point. The fact that the composition of morphisms

distributes over this addition follows from the usual distributive laws of mul-

tiplications over sums of integers (see Example B.3).

To show that C is an additive category, we will verify that {0} is an initial

and final object of C and that Zn+m is the product of the abelian groups Zn

and Zm. The fact that {0} is both an initial and final object of C follows from

the fact that the only homomorphisms of groups {0} → Zn and Zn → {0} are
the constant zero homomorphisms (for any n ≥ 0).

To verify that Zn+m is the product of the abelian groups Zn and Zm, denote

by pn the projection of an n+m-tuple in Zn+m on its first n-coordinates,

pn : Zn+m → Zn, given by pn(z1, z2, . . . , zn+m) = (z1, z2, . . . , zn),

and denote by pm the projection of an n + m-tuple in Zn+m on its latter

m-coordinates,

pm : Zn+m → Zm, given by pm(z1, z2, . . . , zn+m) = (zn+1, zn+2, . . . , zn+m).

Then, suppose that Zr is an object of C and qn : Zr → Zn and qm : Zr → Zm

are homomorphisms of groups. By construction, a homomorphism of groups
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q : Zr → Zn+m satisfies pn ◦ q = qn and pm ◦ q = qm if and only if it is defined

by

q(z) = (qn(z), qm(z)).

This implies that Zn+m is the product of the abelian groups Zn and Zm, and

as a consequence, shows that C is an additive category.

To show that C is a pre-abelian category, we will show that the usual kernel

of a homomorphism of groups f : Zn → Zm is its kernel viewed as a morphism

of C and that the quotient of the group Zm/ im(f) by its torsion is the cokernel

of f viewed as a morphism of C.

To show that the usual kernel of a homomorphism of groups f : Zn → Zm,

{z ∈ Zn | f(z) = 0},

is the kernel of f viewed as a morphism of C, recall from Proposition A.22 that

this kernel is a subgroup of Zn. Since a subgroup of a free abelian group is also

a free abelian group (see [Hun80, Theorem II.1.6]), then ker(f) is an object of

C. Hence, we can consider the pair (K, k), where K is the usual kernel of f

and k is the inclusion of K inside Zn. By construction, k is a homomorphism

of groups such that f ◦ k = 0. Moreover, notice that, if K ′ is a free abelian

group and k′ : K ′ → Zn is a homomorphism of groups such that f ◦ k′ = 0,

then im(k′) ⊆ K. This implies that we can define a function u : K ′ → K

by u(x) = k′(x). By construction, u is a homomorphism of groups satisfying

k ◦ u = k′. The uniqueness of u follows from the fact that k is the inclusion

(a monomorphism). This shows that the usual kernel of a homomorphism of

groups Zn → Zm is its kernel in the category C.

To construct the cokernel of a morphism f : Zn → Zm in C, we will use once

again the fact that a subgroup of a free abelian group is a free abelian group

[Hun80, Theorem II.1.6]. More specifically, we will use the fact that there exist

z1, z2, . . . , zm ∈ Zm, a natural number r ≤ m, and integers d1, d2, . . . , dr ∈ Z,
such that Zm is generated by z1, z2, . . . , zm and im(f) is the subgroup of Zm

generated by d1z1, d2z2, . . . , drzr. We will thus show that the cokernel of f is

given by the pair (C, c), where C = Zm−r and c : Zm → Zm−r is given by the

projection on the latter m− r coordinates with respect to z1, z2, . . . , zm,

c(n1z1 + n2z2, · · ·+ nmzm) = (nr+1, nr+2, . . . , nm).

By construction, C is an object of C and c is a morphism of C such that

c ◦ f = 0. Moreover, if C ′ is another object of C and c′ : Zm → C ′ is another

homomorphism of groups such that c′ ◦ f = 0, then im(f) ⊆ ker(c′). This
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implies that c′(zi) = 0, since dic
′(zi) = c′(dizi) = 0, for all i ∈ {1, 2, . . . , r}.

Thus, the function u : Zm−r → C ′ defined by

u(n1, n2, . . . , nm−r) = c′(n1zr+1 + n2zr+2 + · · ·+ nm−rzr),

is a homomorphism of groups such that u◦ c = c′. The uniqueness of u follows

from the fact that c is surjective (an epimorphism). This shows that the pair

(C, c) is the cokernel of the morphism f : Zn → Zm is C.

To verify that C is not an abelian category, we will show that the function

f : Z→ Z defined by f(z) = 2z is a monomorphism which is not the kernel of

any morphism in C. To verify that f is a monomorphism, let g : Zn → Z be a

homomorphism of groups such that f ◦ g = 0. This means that

2g(z) = f(g(z)) = 0 for all z ∈ Zn,

and implies that g(z) = 0 for all z ∈ Zn. That is, if g : Zn → Z is a homo-

morphism of groups such that f ◦ g = 0, then g = 0. This means that f is a

monomorphism.

To conclude this example, we will verify that f is not the kernel of any mor-

phism in C. To do that, we will show that, if ϕ : Z→ Zn is a homomorphism

of groups such that f ◦ϕ = 0, then ϕ = 0. Hence, if f were to be the kernel of

any morphism, this morphism would have to be the constant zero morphism;

whose kernel is the identity morphism, not f (see Example 1.5.2). In fact,

suppose ϕ : Z → Zn is a homomorphisms of groups such that ϕ ◦ f = 0. By

construction, this means that 2ϕ(z) = ϕ(2z) = ϕ(f(z)) = 0 for all z ∈ Z,
which implies that ϕ = 0. This finishes the proof that C is a pre-abelian

category that is not abelian.



Part II

Functors

In the first part of these notes, we concentrated on the internal structure

of categories, analysing objects, morphisms, and composition within a single

axiomatic framework. In this second part, we introduce the concept of a

functor as the fundamental means of relating categories to one another.

Functors can be understood as structure-preserving maps between cate-

gories. We begin this part by presenting the abstract definition and some

foundational examples of functors. Then, we proceed to explore several types

of functors that will be used in the other parts of these notes: faithful, full,

fully faithful, exact and adjoint functors. Along the way, we also present new

constructions: limits, colimits, images of morphisms and exact sequences.

Since we will deal with relations between categories, we will need to dis-

tinguish between distinct categories in this part. Thus, if necessary, given a

category C, we will denote its objects by Obj(C), its morphisms by Mor(C),

and its composition by ◦C. Further, given two objects X and Y of C, we may

denote the class of morphisms between them by HomC(X, Y ).

2.1. Functors

A functor is a structure-preserving relation between categories. It provides a

way to relate objects and morphisms of one category to objects and morphisms

of another category, while respecting composition and identities. We begin this

section with the abstract definition of functors and then follow it up with a

few examples.

Definition 2.1.1. Given two categories, C and D, a functor is a relation F

that assigns an object of D to each object of C and a morphism of D to each

morphism of C in such a way that:

(i) F (idX) = idF (X) for all X ∈ Obj(C),

(ii) F (f ◦C g) = F (f) ◦D F (g) for all f, g ∈ Mor(C) such that f ◦C g ∈ Mor(C).
46
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Notice that, in the definition above, we denote by the same symbol (F ) the

relation between objects and morphisms. If one were to differentiate them by

denoting the relation on objects by FObj and the relation on morphisms by

FMor, then the first condition above would read

FMor(idX) = idFObj(X) .

Also notice that, implicit in the second condition above, is the condition that,

if f ∈ HomC(X, Y ), then FMor(f) ∈ HomD(F
Obj(X), FObj(Y )).

Thus, functors can be thought of as “homomorphisms of categories”, much

like group homomorphisms preserve group structure. To better understand

their definition, we present some examples below.

Example 2.1.2. For any category C, the identity functor IdC : C → C is

defined to be given by:

• IdC(X) = X for every object X of C,

• IdC(f) = f for every morphism f of C.

Since this functor identifies every object and morphism with itself, it trivially

satisfies the conditions (i) and (ii) in Definition 2.1.1.

The identity functor given in the example above is the simplest example of

a functor. In the next example, we will construct a functor that is not the

identity one.

Example 2.1.3. Consider a category C with two objects, Obj(C) = {A,B},
and three morphisms, Mor(C) = {idA, f, idB}, where f ∈ HomC(A,B). In this

case, a functor F : C→ C must assign:

F (A) ∈ {A,B} and F (B) ∈ {A,B},
F (idA) = idF (A), F (f) ∈ HomC(F (A), F (B)) and F (idB) = idF (B) .

For instance, one possible functor that is not the identity one is obtained by

choosing:

F (A) = F (B) = A and F (idA) = F (f) = F (idB) = idA .

On the other hand, notice that there is no functor that assigns

F (A) = B and F (B) = A,

since there is no morphism in HomC(B,A) to serve as F (f).
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A particularly important class of functors are the so-called Hom-functors,

which capture the morphism sets in a category.

Example 2.1.4. Let C be a locally small category. For a fixed object A ∈ C,

the Hom functor

HomC(A,−) : C→ Sets

is defined by assigning:

• To every object X of C, the set HomC(A,−)(X) defined by HomC(A,X),

• For every two objectsX and Y of C and every morphism f ∈ HomC(X, Y ),

the function HomC(A,−)(f) : HomC(A,X) → HomC(A, Y ) that maps a

morphism g ∈ HomC(A,X) to the morphism (f ◦ g) ∈ HomC(A, Y ).

The fact that these assignments define a functor follows from the properties of

the identity morphisms and the associativity of the composition of morphisms.

Notice that in the example above, we fixed the object A in the first compo-

nent of Hom. A natural question is whether it is also possible to fix an object

in the second component of Hom. As we show in the next example, the answer

is ‘yes ’, but with a little difference.

Example 2.1.5. Let C be a locally small category. Its opposite category Cop

is the one whose objects are the same as those of C and whose morphisms are

reversed, that is, HomCop(X, Y ) = HomC(Y,X) for every two objects X and Y

of C.

For a fixed object A ∈ C, the contravariant Hom functor

HomC(−, A) : Cop → Sets

is defined by assigning:

• To every object X of Cop, the set HomC(X,A),

• To every morphism f ∈ HomCop(X, Y ) between objects X and Y of Cop,

the function HomC(f, A) : HomC(X,A) → HomC(Y,A) that maps a mor-

phism h ∈ HomC(X,A) to the morphism (h ◦ f) ∈ HomC(Y,A).

The fact that these assignments define a functor also follows from the prop-

erties of the identity morphisms and the associativity of the composition of

morphisms.
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Now that we have seen examples of functors, we close this section with a re-

sult that states two fundamental properties of functors: they can be composed

and this composition is associative.

Proposition 2.1.6. Let A, B, C, D be categories, let F : A→ B, G : B→ C

and H : C→ D be functors.

(a) The assignment (G ◦ F ) : A→ C, defined by

• (G ◦ F )(X) = G(F (X)) for every object X of A,

• (G ◦ F )(f) = G(F (f)) for every morphism f of A,

is also a functor.

(b) The functors H ◦ (G ◦ F ) and (H ◦G) ◦ F are equal.

Proof. (a) To prove that the assignment (G◦F ) is a functor, we need to verify

that it satisfies conditions (i) and (ii) from Definition 2.1.1. In fact:

(i) For every object X ∈ Obj(A), we have:

(G ◦ F )(idX) = G(F (idX))

= G(idF (X))

= idG(F (X))

= id(G◦F )(X) .

(ii) For every three objects X, Y , Z of A, and for every two morphisms

f ∈ HomA(X, Y ) and g ∈ HomA(Y, Z), we have:

(G ◦ F )(g ◦ f) = G(F (g ◦ f))
= G(F (g) ◦ F (f))
= G(F (g)) ◦G(F (f))
= (G ◦ F )(g) ◦ (G ◦ F )(f).

This shows that G ◦ F is indeed a functor from A to C.

(b) To show that the functors H ◦ (G◦F ) and (H ◦G)◦F are equal, we must

verify that their assignments of objects and morphisms are the same. In

fact:
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• For every object X of A:

(H ◦ (G ◦ F ))(X) = H((G ◦ F )(X))

= H(G(F (X)))

= (H ◦G)(F (X))

= ((H ◦G) ◦ F )(X).

• For every morphism f of A:

(H ◦ (G ◦ F ))(f) = H((G ◦ F )(f))
= H(G(F (f)))

= (H ◦G)(F (f))
= ((H ◦G) ◦ F )(f).

This shows that H ◦ (G ◦ F ) = (H ◦G) ◦ F . □

2.2. Faithful, Full and Fully Faithful Functors

In the remaining sections of these notes, we will define several particularly

important types of functors. In this section, we will introduce faithful, full

and fully faithful functors. We will also provide several examples to illustrate

these concepts.

Definition 2.2.1. Given two locally small categories, C and D, a functor

F : C→ D

is said to be:

• faithful when F : HomC(c1, c2) → HomD(F (c1), F (c2)) is injective for all

pair of objects c1, c2 of C;

• full when F : HomC(c1, c2)→ HomD(F (c1), F (c2)) is surjective for all pair

of objects c1, c2 of C;

• fully faithful when F : HomC(c1, c2) → HomD(F (c1), F (c2)) is bijective

for all pair of objects c1, c2 of C.

We will illustrate the definitions above with a few examples. We will begin

by showing that the identity functor is fully faithful.
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• ⋆

h

id•

f

g

id⋆

k

Figure 2.2.1. Category constructed in Example 2.2.3

Example 2.2.2. Let C be a locally small category. Recall that the identity

functor IdC : C→ C is given by

F (c) = c for all c ∈ Obj(C) and F (f) = f for all f ∈ Mor(C).

This functor is fully faithful. In fact, for every pair of objects c, d of C, we

have that F : HomC(c, d) → HomC(F (c), F (d)) is the identity function. Since

identity functions are bijections, we conclude that F is a fully faithful functor.

Now, we will consider a locally small category and construct a two functors

between them, including an example of a fully faithful functor that is not the

identity one.

Example 2.2.3. Let C be the category with two objects, Obj(C) = {•, ⋆},
six morphisms, Mor(C) = HomC(•, •)∪HomC(•, ⋆)∪HomC(⋆, •)∪HomC(⋆, ⋆),

where

HomC(•, •) = {id•, h}, HomC(•, ⋆) = {f},
HomC(⋆, •) = {g}, HomC(⋆, ⋆) = {id⋆, k},

and the compositions of these morphisms are given by

id• ◦ id• = id•, id• ◦h = h, h ◦ g = g,

h ◦ id• = h, h ◦ h = id•, id• ◦g = g,

f ◦ id• = f, f ◦ h = f, f ◦ g = k,

g ◦ f = h, g ◦ id⋆ = g, g ◦ k = g,

id⋆ ◦f = f, id⋆ ◦ id⋆ = id⋆, id⋆ ◦k = k,

k ◦ f = f, k ◦ id⋆ = k, k ◦ k = id⋆ .

A diagrammatic representation of this category is shown in Figure 2.2.1.

Now we will proceed to construct two functors from this category to itself.

We begin by constructing a functor that is neither faithful nor full. Consider
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any functor F : C→ C such that

F (•) = • and F (⋆) = •.

In order to be a functor, notice that F (Mor(C)) ⊆ HomC(•, •) = {id•, h}. In

particular, if we choose c1 = • and c2 = ⋆, we see that the function

F : HomC(•, ⋆)→ HomC(F (•), F (⋆))

cannot be surjective. This means that no such functor can be full. In order to

guarantee that F is also not a faithful functor, let

F (f) = F (g) = F (h) = F (k) = F (id•) = F (id⋆) = id• .

Since id• is an identity morphism, this assignment defines a functor. And,

since there exists no morphism ϕ ∈ Mor(C) such that F (ϕ) = h, we see that,

when we choose c1 = c2 = •, the function F : HomC(•, •)→ HomC(F (•), F (•))
is not injective. This shows that F is also not faithful.

Next, we will construct a fully faithful functor G : C → C that is different

from the identity. Define G by assigning:

• G(•) = ⋆ and G(⋆) = •,

• G(id•) = id⋆, G(h) = k, G(f) = g, G(g) = f , G(id⋆) = id•, and G(k) = h.

To verify that G is a functor, begin by noticing that

G(id•) = id⋆ = idG(•) and G(id⋆) = id• = idG(⋆) .
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Then, notice that:

G(id• ◦ id•) = G(id•) = id⋆ = id⋆ ◦ id⋆ = G(id•) ◦G(id•),

G(id• ◦h) = G(h) = k = id⋆ ◦k = G(id•) ◦G(h),
G(h ◦ g) = G(g) = f = k ◦ f = G(h) ◦G(g),

G(h ◦ id•) = G(h) = k = k ◦ id⋆ = G(h) ◦G(id•),

G(h ◦ h) = G(id•) = id⋆ = k ◦ k = G(h) ◦G(h),
G(id• ◦g) = G(g) = f = id⋆ ◦f = G(id•) ◦G(g),
G(f ◦ id•) = G(f) = g = g ◦ id⋆ = G(f) ◦G(id•),

G(f ◦ h) = G(f) = g = g ◦ k = G(f) ◦G(h),
G(f ◦ g) = G(k) = h = g ◦ f = G(f) ◦G(g),
G(g ◦ f) = G(h) = k = f ◦ g = G(g) ◦G(f),

G(g ◦ id⋆) = G(g) = f = f ◦ id• = G(g) ◦G(id⋆),

G(g ◦ k) = G(g) = f = f ◦ h = G(g) ◦G(k),
G(id⋆ ◦f) = G(f) = g = id• ◦g = G(id⋆) ◦G(f),

G(id⋆ ◦ id⋆) = G(id⋆) = id• = id• ◦ id• = G(id⋆) ◦G(id⋆),

G(id⋆ ◦k) = G(k) = h = id• ◦h = G(id⋆) ◦G(k),
G(k ◦ f) = G(f) = g = h ◦ g = G(k) ◦G(f),

G(k ◦ id⋆) = G(k) = h = h ◦ id• = G(k) ◦G(id⋆),

G(k ◦ k) = G(id⋆) = id• = h ◦ h = G(k) ◦G(k).

This implies that G is indeed a functor. Finally, to verify that G is fully

faithful, notice that

G : HomC(•, •)→ HomC(⋆, ⋆), G : HomC(•, ⋆)→ HomC(⋆, •),
G : HomC(⋆, •)→ HomC(•, ⋆) and G : HomC(⋆, ⋆)→ HomC(•, •)

are all bijections. This shows that G is a fully faithful functor, different from

the identity.

In the examples above, we only considered functors from a category to itself.

We close this section with an example where we consider a functor between

different categories.

Example 2.2.4. Let k be a field and denote by C the category of vector

spaces over k; that is, the category whose objects are vector spaces over k,
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whose morphisms are linear transformations between these vector spaces, and

whose composition is given by the usual composition of linear transformations

(see Example 1.5.8). Then, let D be the category of sets (see Example 1.1.3).

Next, define a functor F : C→ D in the following way:

• to each vector space (V,+, ·), assign its underlying set, F (V,+, ·) = V ;

• to each linear transformation T : V → W between vector spaces, assign

its underlying function (which is also denoted by T ).

This is a faithful functor which is not full.

In fact, to verify that F is a functor, notice that F (id(V,+,·)) = idV for every

k-vector space (V,+, ·). Also notice that F (T ◦S) = F (T ) ◦F (S) because the
composition of linear transformations is defined to be the composition of their

underlying functions. This justifies the claim that F is a functor.

Now, to verify that the functor F is faithful, notice that, for every pair of

linear transformations T, S : V → W , we have: F (T ) = F (S) if and only

if T = S, because the equality of linear transformations is by definition by

the equality of their underlying functions. Finally, to verify that F is not

full, recall that not every function between sets is a linear transformation.

For instance, any function f : V → W such that f(o) ̸= o is not a linear

transformation V → W . Since k is assumed to be a field, one can construct

one such function whenever W is different from the 0-dimensional k-vector
space {o}. This justifies the claim that the functor F is not full.

2.3. Constructions in Categories IV

2.3.1. Limits. Limits provide a unified framework for constructing universal

objects in category theory, generalizing other concepts introduced earlier, such

as products and equalizers. The concept of a limit captures the idea of an

object that approximates a diagram of objects and morphisms in an optimal

way by satisfying a universal property. In this subsection, we define limits

abstractly and illustrate this concept through a progression of examples.

Definition 2.3.1 (limits). Given two categories, C and I, a diagram in C of

shape I is defined to be a functor D : I→ C. A cone over a diagram D of shape

I is defined to be an object c ∈ Obj(C) together with a family of morphisms

{ψi ∈ HomC(c,D(i)) | i ∈ Obj(I)} such thatD(f)◦ψi = ψj for every morphism

f ∈ HomI(i, j). A limit of a diagram D is a cone (c, {ψi ∈ HomC(c,D(i))}i)
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such that, for every cone (c′, {ψ′
i ∈ HomC(c

′, D(i))}i) over D, there exists a

unique morphism u ∈ HomC(c
′, c) such that ψ′

i = ψi ◦ u for all i ∈ Obj(I). In

this case, the limit is denoted by lim←−D or limD.

This abstract definition may seem daunting at first, but it encapsulates a

simple idea: the limit is an object equipped with morphisms to each object in

the diagram, and these morphisms are compatible with the structure of the

diagram in a universal way. Any other object with compatible morphisms must

factor uniquely through the limit. To build intuition, we begin by constructing

the limit of a diagram in the category of sets.

Example 2.3.2. Let Sets be the category of sets (see Example 1.1.3) and I

be a small category. A diagram in Sets of shape I is a functor D : I→ Sets.

That is, for every object j ∈ Obj(I), we assign a set Di, and to every morphism

f ∈ HomI(i, j), we assign a function Df : Di → Dj.

Given a diagram D of shape I in Sets, a cone over D consists of a set C

and a family of functions {ψi : C → Di | i ∈ Obj(I)}, such that Df ◦ ψi = ψj

for every morphism f ∈ HomI(i, j). Given one such diagram, to construct its

limit, first consider the product
∏

i∈Obj(I)Di. Then, define C to be the subset

consisting of the tuples (di)i ∈
∏

i∈Obj(I)Di, such that Df (di) = dj for every

morphism f ∈ HomI(i, j). In other words, C consists of all tuples that respect

the transition maps of the diagram. Next, define a function πi : C → Di by

setting πi((di)i) = di (the i-th coordinate of the tuple) for every i ∈ Obj(I).

Notice that Df ◦ πi = πj automatically from the construction of C.

Now, to show that the cone (C, {πi}i) is the limit of the diagram D, notice

that, for every cone (C ′, {ψ′
j : C ′ → Di}i) over D, we can define a function

u : C ′ → C by setting u(c′) = (ψ′
i(c

′))i for every element c′ ∈ C ′. The fact

that u is well-defined follows from the fact that the functions ψ′
i satisfy the

condition Df ◦ ψ′
i = ψ′

j by construction. The fact that ψ′
i = πi ◦ u for all

i ∈ Obj(I) follows from the definitions of u and πi:

πi (u(c
′)) = πi ((ψ

′
i(c

′))i) = ψ′
i(c

′) for all c′ ∈ C ′.

Finally, the uniqueness of u follows from the equation above: the i-th coordi-

nate of u(c′) must be πi(u(c
′)) = ψ′

i(c
′), for every i ∈ Obj(I).

This shows that the pair (C, {πi}i) is the limit of the diagram D in the

category of Sets. This provides a very concrete construction for this limit.
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This explicit construction in the category of sets illustrates the general prin-

ciple: limits can be built from products by imposing compatibility conditions.

We now examine how limits specialize to other familiar constructions. First,

we identify terminal objects with limits. This will provide us with a further

array of concrete examples of limits.

Example 2.3.3. Let C be a category and let I be the empty category (with

no objects and no morphisms). A diagram D : I→ C is necessarily the empty

functor. A cone over this empty diagram consists simply of an object c ∈ C

(with no morphisms to specify, since there are no objects in the diagram).

Hence, the limit of the empty diagram is a terminal object in C (see Defini-

tion 1.2.4).

Having seen the degenerate case of the empty diagram and terminal objects,

we now consider the situation in which the limit of a diagram corresponds to

the product.

Example 2.3.4. Let C be a category and let I be the category with two

objects, Obj(I) = {1, 2}, and two morphisms, Mor(I) = {id1, id2}. In this case,

a diagram D : I→ C consists simply of two objects, D(1) = c1 and D(2) = c2,

since D(id1) = idc1 and D(id2) = idc2 automatically. Hence, a cone over this

diagram consists of an object c together with morphisms ψ1 ∈ HomC(c, c1) and

ψ2 ∈ HomC(c, c2). Thus, if the product of c1 and c2 exists in C, it is the limit

of this diagram. In fact, from the definition of product (Definition 1.2.9), we

have that, for every object c and every pair of morphisms ψ1 ∈ HomC(c, c1)

and ψ2 ∈ HomC(c, c2), there exists a unique morphism u ∈ HomC(c, c1 × c2)
such that ψ1 = π1 ◦ u and ψ2 = π2 ◦ u. This is precisely the property satisfied

by the limit of the diagram D.

Having identified limits with products, we now show how limits generalize

another important construction: equalizers.

Example 2.3.5. Let C be a category and let I be the category with two

objects, Obj(I) = {1, 2}, and four morphisms, Mor(I) = {id1, id2, f, g}, where
f and g are morphisms in HomI(1, 2). A diagram D : I → C consists of

two objects, c1 = D(1) and c2 = D(2), and two morphisms, D(f), D(g) ∈
HomC(c1, c2). Hence, a cone over this diagram consists of an object c of C and

two morphisms, ψ1 ∈ HomC(c, c1) and ψ2 ∈ HomC(c, c2), such that D(f)◦ψ1 =

ψ2 = D(g) ◦ ψ1. In particular, notice that: D(f) ◦ ψ1 = D(g) ◦ ψ1 and ψ2 is

uniquely determined by ψ1.
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Thus, if the equalizer of D(f) and D(g) exists in C, the limit of this diagram

is this equalizer. In fact, recall from Definition 1.5.1 that the equalizer of D(f)

and D(g) consists of an object e and two morphisms, ψ ∈ HomC(e, c1) and

D(f) ◦ ψ ∈ HomC(e, c2), such that: D(f) ◦ ψ = D(g) ◦ ψ and, for every object

e′ and every morphism ψ′ ∈ HomC(e
′, c1) satisfying D(f) ◦ ψ′ = D(g) ◦ ψ′,

there exists a unique morphism u ∈ HomC(e
′, e) such that ψ′ = ψ ◦ u. This is

precisely the universal property satisfied by the limit of the diagram D in C.

These examples show that limits generalize constructions in categories that

we had previously introduced and provide an array of examples of limits, as

well as, examples in which limits do not exist. To close this section, we will

consider a more structured type of limit that arises frequently and from inverse

systems indexed by partially ordered sets.

Example 2.3.6. Let C be a category and I be a poset, that is, I is a set

endowed with a partial order ≤. An inverse system in C is a family of objects

{ci | i ∈ I} and a family of morphisms {fij ∈ HomC(ci, cj) | j ≤ i ∈ I} such
that:

• fii = idci for all i ∈ I,

• fjk ◦ fij = fik for all k ≤ j ≤ i ∈ I.

We can realize direct systems in C as functors from a category I to C, that

is, as diagrams of shape I in C. In fact, let I be the small category with object

set I and morphisms determined by the partial order ≤: HomI(i, j) has one

morphism (which we will denote simply by i → j) if and only if j ≤ i in I.

Hence, a diagram D : I → C is the assignment of: an object D(i) to each

object i ∈ Obj(I), and a morphism D(i → j) ∈ HomC(D(i), D(j)) to each

morphism i → j. Furthermore, these morphisms must satisfy the following

conditions (see Definition 2.1.1):

• D(idi) = idD(i) for all i ∈ I,

• D(j → k) ◦D(i→ j) = D(i→ k) for all k ≤ j ≤ i ∈ I.

In this particular case, the limit of the directed system is defined to be

the limit of the corresponding diagram. More specifically, this limit is a pair

(c, {ψi ∈ HomC(c, ci) | i ∈ I}) such that: fij ◦ ψi = ψj for all j ≤ i and, if

(c′, {ψ′
i ∈ HomC(c

′, ci) | i ∈ I}) is such that fij ◦ ψ′
i = ψ′

j for all j ≤ i, then

there exists a unique morphism u ∈ HomC(c
′, c) such that ψ′

i = ψi ◦ u for all

i ∈ I.
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2.3.2. Colimits. Colimits also provide a unified framework for constructing

universal objects in category theory and generalize other concepts such as

coproducts and coequalizers. In this subsection, we define colimits abstractly

and illustrate this concept through a progression of examples.

Definition 2.3.7 (colimits). Given two categories, C and I, a diagram in C

of shape I is defined to be a functor D : I → C. Given one such diagram D,

a cocone over D is defined to be an object c of C together with a family of

morphisms {ϕi ∈ HomC(D(i), c) | i ∈ Obj(I)}, such that ϕj ◦ D(f) = ϕi

for every morphism f ∈ HomI(i, j). The colimit of a diagram D is de-

fined to be a cocone (c, {ϕi ∈ HomC(D(i), c)}i) such that, for every cocone

(c′, {ϕ′
i ∈ HomC(D(i), c′)}i), there exists a unique morphism u ∈ HomC(c, c

′)

such that ϕ′
i = u ◦ ϕi for all i ∈ Obj(I). In this case, the colimit is denoted by

lim−→D or colimD.

This abstract definition may seem daunting at first, but it encapsulates a

simple idea: the colimit is an object equipped with morphisms from each object

in the diagram, and these morphisms are compatible with the structure of the

diagram in a universal way. Any other object with compatible morphisms must

factor uniquely from the colimit. To build intuition, we begin by constructing

the colimit of a diagram in the category of sets.

Example 2.3.8. Let Sets be the category of sets (see Definition 1.1.3) and let

I be a small category. A diagram in Sets of shape I is a functor D : I→ Sets,

that is, a set Di is assigned to each object i of I, and a function Df : Di → Dj

is assigned to each morphism f ∈ HomI(i, j).

Given a diagram D in Sets, a cocone over D consists of a set C and a

family of functions {ϕi : Di → C | i ∈ Obj(I)}, such that ϕj ◦ Df = ϕi for

every morphism f ∈ HomI(i, j). To construct the colimit of one such diagram,

first consider the disjoint union
⊔

i∈Obj(I)Di. Then, define ∼ as the smallest

equivalence relation on this disjoint union such that di ∼ dj when there exists

a morphism f ∈ HomC(i, j) such that Df (di) = dj. Next, define C to be the

quotient set
(⊔

i∈Obj(I)Di

)
/∼ and denote the equivalence class in C of an

element c in Di by [c]. Finally, for each i ∈ Obj(I), define ιi : Di → C to be

the function given by ιi(di) = [di]. Notice that ιj ◦Df = ιi automatically from

the construction of the equivalence relation.

To show that the cocone (C, {ιi}i) is the colimit of the diagram D, begin by

noticing that, for every cocone (C ′, {ϕ′
i : Di → C ′}i), we can define a function
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u : C → C ′ by setting u([di]) = ϕ′
i(di). To see that u is well-defined, note that

if di ∼ dj, then the cocone conditions ϕ′
j ◦Df = ϕ′

i ensure that ϕ
′
i(di) = ϕ′

j(dj),

so the value of u does not depend on the choice of representative. Then, notice

that ϕ′
i = u ◦ ιi for all i ∈ Obj(I) by the definitions of u and ιi:

u(ιi(di)) = u([di]) = ϕ′
i(di) for all di ∈ Di and all i ∈ Obj(I).

Finally, notice that u is completely determined by the equation above.

This shows that the pair (C, {ιi}i) is the colimit of the diagram D in the

category Sets. This provides a very concrete construction for colimits.

This explicit construction in the category of sets illustrates the general prin-

ciple: colimits can be built from coproducts. We now examine how colimits

specialize to other familiar constructions. First, we identify initial objects with

colimits. This will provide us with a further array of examples of colimits.

Example 2.3.9. Let C be a category and let I be the empty category (with

no objects and no morphisms). A diagram D : I→ C is necessarily the empty

functor. A cocone over this empty diagram consists simply of an object c ∈ C

(with no morphisms to specify, since there are no objects in the diagram).

Hence, the colimit of the empty diagram is an initial object in C: an object c

such that for every object c′ ∈ C, there exists a unique morphism c→ c′.

Having seen the degenerate case of the empty diagram and initial objects,

we now consider the situation in which the colimit of a diagram corresponds

to the coproduct.

Example 2.3.10. Let C be a category and let I be the discrete category with

two objects, Obj(I) = {1, 2}, and two morphisms, Mor(I) = {id1, id2}. A

diagram D : I → C consists simply of two objects, D(1) = c1 and D(2) = c2,

since D(id1) = idc1 and D(id2) = idc2 . Hence, a cocone over this diagram

consists of an object c together with morphisms ϕ1 ∈ HomC(c1, c) and ϕ2 ∈
HomC(c2, c). Thus, if the coproduct of c1 and c2 exists in C, then it is the colimit

of this diagram. In fact, from the definition of coproducts (Definition 1.2.15),

we have that, for every object c and every pair of morphisms ϕ1 ∈ HomC(c1, c)

and ϕ2 ∈ HomC(c2, c), there exists a unique morphism u ∈ HomC(c1 ⊔ c2, c)
such that ϕ1 = u ◦ ι1 and ϕ2 = u ◦ ι2.

Having identified colimits with coproducts, we now show how colimits gen-

eralize another important construction: coequalizers.
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Example 2.3.11. Let C be a category and let I be the category with two

objects, Obj(I) = {1, 2}, and four morphisms, Mor(I) = {id1, id2, f, g}, where
f and g are morphisms in HomI(1, 2). A diagram D : I → C consists of

two objects, c1 = D(1) and c2 = D(2), and two morphisms, D(f), D(g) ∈
HomC(c1, c2). A cocone over this diagram consists of an object c of C and two

morphisms, ϕ1 ∈ HomC(c1, c) and ϕ2 ∈ HomC(c2, c), such that ϕ2 ◦ D(f) =

ϕ1 = ϕ2 ◦ D(g). Notice that, we have that: ϕ2 ◦ D(f) = ϕ2 ◦ D(g) and ϕ1 is

uniquely determined by ϕ2.

Thus, if the coequalizer of the morphisms D(f) and D(g) exists in C, then

it is the colimit of this diagram. In fact, recall from Definition 1.5.9 that the

coequalizer of D(f) and D(g) consists of an object c of C and a morphism

π ∈ HomC(c2, c), such that: π ◦D(f) = π ◦D(g) and, for every other object c′

and every morphism π′ ∈ HomC(c2, c
′) satisfying π′ ◦D(f) = π′ ◦D(g), there

exists a unique morphism u ∈ HomC(c, c
′) such that π′ = u◦π. This is exactly

the universal property satisfied by the colimit of the diagram D.

These examples show that colimits recover other constructions in categories

and provide an array of examples of colimits. To close this section, we will

consider a more structured type of colimit that arises frequently and from

direct systems indexed by partially ordered sets.

Example 2.3.12. Let C be a category and I be a poset, that is, let I is a set

endowed with a partial order ≤. A direct system in C is a family of objects

{ci | i ∈ I} and a family of morphisms {fij ∈ HomC(ci, cj) | i ≤ j ∈ I} such
that:

• fii = idci for all i ∈ I,

• fjk ◦ fij = fik for all i ≤ j ≤ k ∈ I.

We can realize direct systems in C as functors from a category I to C.

More precisely, let I be the small category with object set I and morphisms

determined by the partial order ≤: HomI(i, j) has one morphism (which we

will denote simply by i → j) if and only if i ≤ j in I. Hence, a functor

D : I→ C is the assignment of an object D(i) ∈ Obj(C) to each object i ∈ I,
and a morphism D(i → j) : D(i) → D(j) in C to each morphism i → j in I.

Furthermore, these morphisms must satisfy the following conditions:

• D(idi) = idD(i) for all i ∈ I,

• D(i→ k) = D(j → k) ◦D(i→ j) for all i ≤ j ≤ k ∈ I.
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In this particular case, the colimit of the direct system is defined to be the

colimit of the corresponding diagram. More specifically, this colimit is a pair

(c, {ϕi ∈ HomC(ci, c)}i) such that: ϕj ◦ fij = ϕi for all i ≤ j in I and, if

(c′, {ϕ′
i ∈ HomC(ci, c

′)}i) is another cocone such that ϕ′
j ◦ fij = ϕ′

i for all i ≤ j

in I, then there exists a unique morphism u ∈ HomC(c, c
′) such that ϕ′

i = u◦ϕi

for all i ∈ I.

2.3.3. Images of Morphisms. In this section, we define the image of a mor-

phism in an abstract category, provide some examples, and show how the

abstract definition captures the essential range of a morphism. In familiar

categories, we will see that this definition agrees with the usual notion of

image.

Definition 2.3.13 (image of morphism). Given a category C, the image of

a morphism f ∈ HomC(a, b) is a triple (im(f),m, e) satisfying the following

property:

• im(f) is an object of C,

• m ∈ HomC(im(f), b) is a monomorphism,

• e ∈ HomC(a, im(f)) is such that f = m ◦ e,

• if x is an object of C and e′ ∈ HomC(a, x) and m′ ∈ HomC(x, b) are

morphisms such that m′ is a monomorphism and f = m′ ◦ e′, then there

exists a unique morphism u : im(f)→ x such that m = m′ ◦ u.

As is usual with definitions given in terms of universal properties, when an

image of a morphism exists, it is unique up to isomorphism. This abstract def-

inition encodes the intuition that the image should be the smallest subobject

through which f factors: since m is a monomorphism, im(f) can be viewed as

a subobject of b, and the universal property ensures that any other monomor-

phic factorization of f factors through im(f). However, not all categories have

images for all morphisms. We will illustrate both situations through examples.

To begin, we show that the image of a morphism in the category of sets is the

usual image of a function.

Example 2.3.14. Let Sets be the category of sets (see Example 1.1.3). For

any function between sets, f : A → B, its image (in the categorical sense)

coincides with the usual set-theoretic image,

im(f) = {b ∈ B | there exists a ∈ A such that b = f(a)} .
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To justify this claim, notice that:

• im(f) is a set.

• The inclusion map, m : im(f) → B given by m(b) = b for all b ∈ im(f),

is a monomorphism in Sets (see Example 1.7.2).

• The restriction of f , that is, the map e : A→ im(f) given by e(a) = f(a)

for all a ∈ A, is a function such that f = m ◦ e.

• Suppose X is a set and e′ : A → X and m′ : X → B are functions such

that m′ is injective (that is, monic, see Example 1.7.2) and f = m′ ◦ e′.
This means that f(a) = m′(e′(a)) for all a ∈ A. Hence, we can define a

function u : im(f)→ X as follows: for each b ∈ im(f), choose any a ∈ A
such that f(a) = b, and set u(b) = e′(a). To see that u is well-defined,

suppose f(a1) = f(a2) = b for some a1, a2 ∈ A. Then

m′(e′(a1)) = f(a1) = f(a2) = m′(e′(a2)).

Since m′ is injective, we have e′(a1) = e′(a2), so the choice of a does not

matter, or equivalently, u is well-defined. By definition, we have

m′(u(f(a))) = m′(e′(a)) = f(a) = m(f(a)),

that is, m′ ◦ u = m. The uniqueness of u follows from the fact that m′ is

a monomorphism. In fact, for every function u′ : im(f) → X such that

m′ ◦ u′ = m, we have m′ ◦ u′ = m′ ◦ u, and as a consequence, u′ = u.

Next, we show a case where the image can be computed explicitly.

Example 2.3.15. Let C be a category and a be an object of C. The image of

ida is isomorphic to a.

To see this, notice that a is an object of C, that ida is a monomorphism in

HomC(a, a), and that ida is a morphism in HomC(a, a) such that ida = ida ◦ ida.

Furthermore, if x is an object of C and if e′ ∈ HomC(a, x) and m
′ ∈ HomC(x, a)

are morphisms such that m′ is a monomorphism and ida = m′ ◦ e′, then we

must show there exists a unique morphism u : a → x such that ida = m′ ◦ u.
Taking u = e′, we have m′ ◦ u = m′ ◦ e′ = ida, as required. The uniqueness

of u follows from the fact that m′ is a monomorphism. In fact, if v is any

morphism in HomC(a, x) such that ida = m′ ◦ v, then m′ ◦ v = m′ ◦ e′, and as

a consequence, v = e′. Thus u = e′ is the unique such morphism.

The key observation in the example above is that, since the morphism itself

is already a monomorphism, the image factorization does not need to factor



NOTES ON CATEGORY THEORY 63

out any additional structure. Thus, for monomorphisms, the image is essen-

tially the domain itself. This general result will be a consequence of the next

proposition.

Proposition 2.3.16. Let C be a category, f ∈ HomC(a, b) and g ∈ HomC(b, c)

be morphisms of C. If the image of g ◦ f exists in C and g is a monomorphism,

then the image of f also exists in C and is isomorphic to the image of g ◦ f .

Proof. Let im(g ◦ f) be the image of g ◦ f , let e ∈ HomC(a, im(g ◦ f)) be a

morphism, and let m ∈ HomC(im(g ◦ f), c) be a monomorphism such that

(g ◦ f) = m ◦ e. We will show that im(g ◦ f) also serves as the image of f .

By the universal property of im(g◦f) applied to the factorization g◦f = g◦f
(where we view this as a factorization through b with e′ = f and m′ = g),

there exists a unique morphism u ∈ HomC(im(g ◦ f), b) such that g ◦ u = m.

Moreover, since m is a monomorphism, u must also be a monomorphism.

Furthermore, we have

g ◦ f = m ◦ e = (g ◦ u) ◦ e = g ◦ (u ◦ e),

and since g is a monomorphism, this implies that f = u ◦ e. In summary:

• im(g ◦ f) is an object of C,

• u ∈ HomC(im(g ◦ f), b) is a monomorphism,

• e ∈ HomC(a, im(g ◦ f)) be a morphism such that f = u ◦ e.

To complete the proof that im(g ◦ f) is isomorphic to im(f), let x be an

object of C and e′ ∈ HomC(a, x) and m
′ ∈ HomC(x, b) be morphisms such that

m′ is a monomorphism and f = m′ ◦e′. We need to show there exists a unique

morphism v : im(g ◦ f)→ x such that u = m′ ◦ v.

To do that, we will use the universal property of im(g◦f). First notice that x
is an object of C, that e ∈ HomC(a, x) is a morphism and (g◦m′) ∈ HomC(x, c)

is a monomorphism, such that

g ◦ f = g ◦ (m′ ◦ e′) = (g ◦m′) ◦ e′.

Hence, the universal property of im(g ◦ f) implies that there exists a unique

morphism v ∈ HomC(im(g ◦ f), x) such that m = (g ◦m′) ◦ v. Since g ◦u = m,

it follows from this equality that

g ◦ u = (g ◦m′) ◦ v = g ◦ (m′ ◦ v).

The fact that g is a monomorphism implies that u = m′ ◦v, as we wanted. □
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In the next example, we address the opposite situation: we compute the

image of the zero morphism in an abelian category.

Example 2.3.17. Let A be an abelian category and let a, b be objects of A.

The image of the zero morphism 0 ∈ HomA(a, b) is 0. To justify this claim,

notice that:

• 0 is an object of A;

• id0 : 0→ b is a monomorphism (the unique morphism from 0 to b);

• 0 : a → 0 is a morphism of A such that 0 = id0 ◦ 0 (where the left side

is the zero morphism a → b and the composition on the right equals the

zero morphism);

• if x is an object of A and if e′ ∈ HomA(a, x) and m′ ∈ HomA(x, b) are

morphisms such that m′ is a monomorphism and 0 = m′ ◦ e′, then the

unique morphism u : 0 → x (which exists since 0 is the zero object)

satisfies id0 = m′ ◦ u.

These examples show cases where images exist. However, in general cate-

gories, images may fail to exist. In the next example, we will present a case

where the image does not exist.

Example 2.3.18. Consider a small category C with two objects, Obj(C) =

{a, b}, morphisms given by

HomC(a, a) = Z2 =
{
0, 1
}
, HomC(a, b) = {f},

HomC(b, b) = N = {0, 1, 2, . . . }, HomC(b, a) = ∅,

and composition given by

0 ◦ 0 = 1 ◦ 1 = 0, 0 ◦ 1 = 1 ◦ 0 = 1, f ◦ 0 = f ◦ 1 = f,

n ◦m = n+m and n ◦ f = f for all n,m ∈ N.

In this case, the image of f does not exist.

To justify this claim, first notice that f is not a monomorphism, since 0 ̸= 1

and f ◦ 0 = f ◦ 1. Hence, the only object of C for which there could exist

a monomorphism into b is b itself. In fact, for all m ∈ HomC(b, b), we have

m◦n1 = m◦n2 if and only if m+n1 = m+n2 in N. Since m+n1 = m+n2 in

N if and only if n1 = n2, we see that every morphism in HomC(b, b) is in fact

a monomorphism. Moreover, m ◦ f = f for all m ∈ HomC(b, b), so f factors

through b via any m ∈ N. However, since N has no maximal element and
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for any m ∈ N there exist n, n′ ∈ N with n > m such that we cannot write

m = n+n′, there is no monomorphism b→ b through which all factorizations

pass. This means that the universal property cannot be satisfied, so the image

of f does not exist in C.

Having explored examples and non-examples, we close this section with

the case of abelian categories, where images always exist and can be described

using kernels and cokernels. The following proposition provides two equivalent

characterizations of the image in this setting.

Proposition 2.3.19. Let A be an abelian category and let f ∈ HomA(a, b)

be a morphism of A. The image of f is (isomorphic to) the cokernel of the

kernel of f .

Proof. To show that coker(ker(f)) is isomorphic to im(f), let k : ker(f)→ a be

the kernel of f and e : a→ coker(k) be the cokernel of k. From the definition

of kernel (Definition 1.5.6), f ◦k = 0. Then, from the universal property of the

cokernel (Definition 1.5.14), there exists a unique morphism m : coker(k)→ b

such that f = m ◦ e. Now, notice that:

• coker(k) is an object of A.

• m ∈ HomA(coker(k), b) is a monomorphism.

• e ∈ HomA(a, coker(k)) is a morphism that satisfies f = m ◦ e.

• If x is an object ofA, e′ ∈ HomA(a, x) is a morphism, andm′ ∈ HomA(x, b)

is a monomorphism such that f = m′◦e′, then we can construct a (unique)

morphism u : coker(k) → x such that m = m′ ◦ u. In fact, from the

definition of kernel (Definition 1.5.6), we have that

0 = f ◦ k = (m′ ◦ e′) ◦ k = m′ ◦ (e′ ◦ k).

Since m′ is a monomorphism (by hypothesis), this implies that e′ ◦ k = 0.

Now, from the definition of cokernel (Definition 1.5.14), there exists a

unique morphism u ∈ HomA(coker(k), x) such that e′ = u ◦ e. Thus,

m ◦ e = f = m′ ◦ e′ = m′ ◦ (u ◦ e) = (m′ ◦ u) ◦ e.

Since e is an epimorphism (see Example 1.7.9), this equation implies that

m = m′ ◦ u.
To finish the proof that coker(k) is isomorphic to im(f), we will use

the fact that m′ is a monomorphism to show that this morphism u is the
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unique morphism in HomA(coker(k), x) such that m = m′ ◦ u. In fact, if

u′ ∈ HomA(coker(k), x) is a morphism such that m′ ◦ u′ = m, we obtain

that m′ ◦ u′ = m = m′ ◦ u, and as a consequence, that u′ = u.

This shows that the cokernel of the kernel of f is isomorphic to its image. □

To close this section, we make a remark that follows from the proof of the

previous result and will be used in the subsequent sections.

Remark 2.3.20. Let A be an abelian category and f ∈ HomA(a, b) be a mor-

phism in A. It follows from the proof of Proposition 2.3.19 that the morphism

e in the factorization f = m ◦ e given in Definition 2.3.13 is an epimorphism.

Moreover, the decomposition f = m ◦ e is unique up to composition with

isomorphisms.

2.3.4. Exact Sequences. Exact sequences capture the idea that the output

of one morphism is precisely the input that the next morphism kills. In this

section, we define exact sequences in abstract abelian categories and explore

their basic properties through examples.

Definition 2.3.21 (exact sequence). Given an abelian category A, a sequence

a
f−→ b

g−→ c of two morphisms and three objects of A is said to be exact at

b when im(f) = ker(g). Similarly, a sequence 0
0−→ a

f−→ b
g−→ c

0−→ 0 of four

morphisms and five objects of A is said to be a short exact sequence when it

is exact at a, b and c.

Notice that the exactness of the sequence 0→ a→ b at a is an abstraction

of injectiveness and the exactness of the sequence b→ c→ 0 at c is abstraction

of surjectiveness (see Proposition 2.3.27 for the formal statements). To make

these concepts more concrete, we examine several examples.

Example 2.3.22. Consider the abelian category of abelian groups (see Ex-

ample 1.8.3). Let Z denote the abelian group of integers under addition (see

Example A.2), and let Z/2Z denote the quotient group of integers modulo 2

(see Example A.21). Consider the sequence of abelian groups

0→ Z→ Z→ Z/2Z→ 0,

where the first non-zero morphism is multiplication by 2 (sending n 7→ 2n)

and the second is the quotient map (sending n 7→ n, the residue class of n

modulo 2). We verify that this is a short exact sequence by checking exactness

at each object:
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• The image of the zero morphism 0→ Z is {0}. The kernel of multiplica-

tion by 2 is {n ∈ Z | 2n = 0} = {0}. Since {0} = {0}, the sequence is

exact at the first Z.

• The image of multiplication by 2 is {2n | n ∈ Z} = 2Z, the set of even

integers. The kernel of the quotient map is {n ∈ Z | n = 0} = 2Z, the
set of all integers that are multiples of 2. Since 2Z = 2Z, the sequence is

exact at the second Z.

• The image of the quotient map is Z/2Z, since it is surjective. The kernel

of the zero morphism Z/2Z→ 0 is all of Z/2Z. Since Z/2Z = Z/2Z, the
sequence is also exact at Z/2Z.

The concrete example above illustrates the key features of short exact se-

quences in a familiar setting. However, the definition applies equally well to

abstract abelian categories, and we can construct exact sequences from any

object using only categorical operations. The next example shows the simplest

possible short exact sequence that exists in an abelian category.

Example 2.3.23. Let A be any abelian category and a be an object of A.

The sequence

0
0−→ a

ida−→ a
0−→ 0

0−→ 0

is a short exact sequence. To verify this, we check exactness at each subse-

quence:

• The sequence 0
0−→ a

ida−→ a is exact at a because the image of the morphism

0 is 0 (see Example 2.3.17) and the kernel of the identity morphism is 0.

• The sequence a
ida−→ a

0−→ 0 is exact at a because the image of the iden-

tity morphism ida is a (see Proposition 2.3.16) and the kernel of the 0

morphism is a (see Example 1.5.2).

• The sequence a
0−→ 0

0−→ 0 is exact at 0 because the image of the 0 mor-

phism is 0 (see Example 2.3.17) and the kernel of the 0 morphism is 0

(see Example 1.5.2).

While this example is somewhat degenerate, it establishes that exact se-

quences exist and that the definition is consistent with our intuition. More

interesting examples arise from the fundamental constructions involving prod-

ucts and kernels. The next example shows how products in abelian categories

induce short exact sequences.
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Example 2.3.24. Let A be an abelian category, a and b be two objects of A.

We will construct a short exact sequence

0→ a→ a× b→ b→ 0.

To do that, begin by recalling from Definition 1.2.9 that there exist mor-

phisms pa ∈ HomA(a × b, a) and pb ∈ HomA(a × b, b) such that: if x is an

object of A and if fa ∈ HomA(x, a) and fb ∈ HomA(x, b) are morphisms of A,

then there exists a unique morphism f ∈ HomA(x, a× b) such that pa ◦ f = fa
and pb ◦ f = fb. In particular, if we choose x = a, fa = ida and fb = 0, there

exists a unique morphism ia ∈ HomA(a, a × b) such that pa ◦ ia = ida and

pb ◦ ia = 0. Similarly, if we choose x = b, fa = 0 and fb = idb, there exists a

unique morphism ib ∈ HomA(b, a × b) such that pa ◦ ib = 0 and pb ◦ ib = idb.

We will use these morphisms and show that the sequence

0→ a
ia−→ a× b pb−→ b→ 0 (2.3.1)

is exact.

To show that this sequence is exact at a, we will verify that, if x is an object

of A and f ∈ HomA(x, a) is a morphism such that ia ◦f = 0, then f = 0. This

will imply that ker(a) = 0 (see Definition 1.5.6). In fact, if ia ◦ f = 0, then

f = ida ◦f = (pa ◦ ia) ◦ f = pa ◦ (ia ◦ f) = pa ◦ 0 = 0.

To show that the sequence (2.3.1) is exact at a × b, by definition, we must

show that im(ia) = ker(pb). Since ia is a monomorphism, this is equivalent to

showing that (a, ia) is the kernel-pair of pb (see Proposition 2.3.16). So, we

will verify that, if x is an object of A and f ∈ HomA(x, a× b) is a morphism

such that pb ◦ f = 0, then there exists a unique morphism u ∈ HomA(x, a)

such that ia ◦ u = f . In fact, if we choose u = pa ◦ f , then

ia ◦ u = ia ◦ (pa ◦ f) = (ia ◦ pa) ◦ f = ida ◦f = f.

The uniqueness of u follows from the fact that ia is a monomorphism (which

was proved in the previous paragraph).

Finally, to show that the sequence (2.3.1) is exact at b, we will verify that

(b, pb) is the cokernel of ia. Since (a, ia) is the kernel of pb, this will imply that

im(pb) = b (see Proposition 2.3.19). To verify that (b, pb) is the cokernel of ia,

we must check that, if x is an object of A and f ∈ HomA(a×b, x) is a morphism

such that f ◦ ia = 0, then there exists a unique morphism u ∈ HomA(b, x) such
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that u ◦ pb = f . In fact, if we choose u = f ◦ ib, since f ◦ ia = 0, we have

f = f ◦ ida×b = f ◦ (ia ◦ pa + ib ◦ pb) = f ◦ (ia ◦ pa) + f ◦ (ib ◦ pb) = u ◦ pb.

The uniqueness of u follows from the fact that pb ◦ ib = idb.

The next example shows how kernels in abelian categories induce short exact

sequences.

Example 2.3.25. Let A be an abelian category, a, b be two objects of A, and

f ∈ HomA(a, b) be a morphism. We can construct a short exact sequence

0→ ker(f)→ a→ im(f)→ 0.

To justify this claim, we will construct each subsequence of this short exact

sequence and explain why it is exact.

• First, denote by (ker(f), k) the kernel-pair of the morphism f (see Defini-

tion 1.5.6). By Example 1.7.4, we know that k is a monomorphism, and

hence, we know that its kernel is 0. Since the image of the 0 morphism is

also 0 (see Example 2.3.17), we see that the sequence 0
0−→ ker(f)

k−→ a is

exact at ker(f).

• Next, recall from Definition 2.3.13 that there exist e ∈ HomA(a, im(f))

and m : HomA(im(f), b) such that m is monic and f = m ◦ e. Since m

is monic, the kernel of e is equal to the kernel of f (as f ◦ k = 0 if and

only if e ◦ k = 0). Since k is a monomorphism, its image is also equal to

ker(f) (see Proposition 2.3.16). Hence, the sequence ker(f)
k−→ a

e−→ im(f)

is exact at a.

• Finally, recall from Proposition 2.3.16 that the image of e is equal to the

image of f . Since the kernel of the morphism 0 : im(f) → 0 is im(f), it

follows that the sequence a
e−→ im(f)

0−→ 0 is exact at im(f).

These examples illustrate how exact sequences arise naturally from the basic

morphisms in abelian categories. However, exactness is a strong condition, and

most sequences are not exact. To see an evidence of this, consider the following

example from linear algebra.

Example 2.3.26. Consider the sequence R T−→ R2 S−→ R3 in the category of

real vector spaces, where T (x) = (x, 0) and S(x, y) = (x, y, 0). This sequence

is not exact at R2, since the image of T is R× {0} and S is injective, then

im(T ) = R× {0} ̸= {(0, 0)} = ker(S).
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We will close this section with a result that formalizes the idea that the

exactness of the sequence 0→ a→ b at a is an abstraction of injectivity, and

the exactness of the sequence b→ c→ 0 at c is an abstraction of surjectivity.

Proposition 2.3.27. Let A be an abelian category and a, b be two of its

objects.

(a) If f ∈ HomA(a, b) is such that the sequence 0→ a
f−→ b is exact at a, then

f is a monomorphism.

(b) If f ∈ HomA(a, b) is such that the sequence a
f−→ b→ 0 is exact at b, then

f is an epimorphism.

Proof. We will prove each part separately.

(a) Assume the sequence 0 → a
f−→ b is exact at a. By definition of exact-

ness, this means that im(0 → a) = ker(f). Since the image of the zero

morphism 0→ a is 0 (see Example 2.3.17), we have ker(f) = 0.

To show that f is a monomorphism, let x be an object of A and let

g, h ∈ HomA(x, a) be morphisms such that f ◦g = f ◦h. We need to show

that g = h. Since f ◦g = f ◦h, then f ◦(g−h) = 0, which implies that g−h
factors through ker(f). Since ker(f) = 0, this means that there exists a

unique morphism u : x→ 0 (the zero morphism) such that g− h = k ◦ u,
where k : 0 → a is the kernel morphism (see Definition 1.5.6). Since

k ◦ u = 0, so is g − h = 0. This implies that g = h and proves that f is a

monomorphism.

(b) Assume that the sequence a
f−→ b → 0 is exact at b. By definition of ex-

actness, this means that im(f) = ker(b→ 0). Since the kernel of the zero

morphism b→ 0 is all of b (see Example 1.5.2), we have im(f) = b. Now,

recall from Remark 2.3.20 that there exist a unique (up to composition

with isomorphisms) epimorphism e ∈ HomA(a, im(f)) and a unique (up

to composition with isomorphisms) monomorphism m ∈ HomA(im(f), b)

such that f = m ◦ e. Since im(f) = b, we can choose f = idb ◦f . This

implies that f is an epimorphism. □

2.4. Exact Functors

When working with categories, we are naturally interested in functors that

preserve some of their structure. Functors that preserve limits and colimits
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are called exact functors. They play central roles in homological algebra,

algebraic geometry, and category theory. In this section, we will define this

notion precisely and illustrate it with examples. We begin with the abstract

definition of exact functors.

Definition 2.4.1 (exact functors). Given two categories C and D, a functor

F : C→ D between them is said to be: left-exact when all finite limits exist in

C and F preserves these finite limits; right-exact when all finite colimits exist

in C and F preserves these finite colimits, and exact when all finite limits and

colimits exist in C and F preserves these finite limits and finite colimits.

We will expand a little more on the definition above. First, consider the

definition of a left-exact functor. Recall that limits are defined for diagrams

in categories. So, given two categories I and C, a diagram D is a functor

D : I → C. The limit of this diagram is a pair (c, {ϕi}i), where c is an

object of C, ϕi is a morphism in HomC(c,D(i)) for every object i of I, and the

pair (c, {ϕi}i) satisfies the universal property of limits (see Definition 2.3.1).

Moreover, this limit is said to be finite, when the category I has finitely-many

objects and finitely-many morphisms, that is, Obj(I) and Mor(C) are finite

sets.

Next, recall that for every category D and every functor F : C→ D, we can

define a composition functor F ◦ D : I → D (see Proposition 2.1.6). Notice

that F ◦ D is a diagram in D. Hence, we can also define the limit of this

diagram F ◦ D in D. By definition, F is left-exact when (F (c), {F (ϕi)}i) is

the limit of the diagram F ◦D for every diagram D : I→ C whose limit in C

is (c, {ϕi}i).

Similarly, a functor is said to be right-exact when the pair (F (c), {F (ϕi)}i)
is the colimit of the diagram F ◦ D for every diagram D : I → C for which

(c, {ϕi}i) is the colimit in C. Notice that these definitions capture different

ways in which a functor can interact with limits and colimits. To understand

these distinctions, we begin with the simplest case where exactness is auto-

matic.

Example 2.4.2. For every category C in which all finite limits and colimits

exist, the identity functor IdC (see Example 2.1.2) is exact. To justify this

claim, suppose I is a finite category and D : I→ C is a diagram in C.

If the limit of a diagram D exists, it will be a pair (c, {ϕi}i), where c is

an object of C, ϕi is a morphism in HomC(c,D(i)) for every object i of I,
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and the universal property of limits is satisfied by (c, {ϕi}i). When we apply

the functor IdC to this pair, we obtain the pair (IdC(c), {IdC(ϕi)}i), where

IdC(c) = c and IdC(ϕi) = ϕi for all i ∈ Obj(I). Since IdC ◦D = D, the limit

of the diagram IdC ◦D is exactly the pair (IdC(c), {IdC(ϕi)}i). This shows that
IdC preserves limits, that is, it is left-exact.

If the colimit of the diagram D also exists, it will be a pair (c, {ψi}i), where
c is an object of C, ψi is a morphism in HomC(D(i), c) for every object i of I,

and the universal property of colimits is satisfied by this pair. When we apply

the functor IdC, we obtain the pair (IdC(c), {IdC(ψi)}i) = (c, {ψi}i). Hence,

the colimit of the diagram IdC ◦D = D is exactly the pair (IdC(c), {IdC(ψi)}i).
This shows that IdC also preserves colimits, that is, it is also right-exact.

Identity functors provide no obstruction to exactness because they preserve

all structures of the category. More interesting examples arise from Hom-

functors, which behave differently with respect to exactness.

Example 2.4.3. Let C be a category in which all finite limits and colimits

exist, let x be a fixed object of C, and denote by D the category of sets

(see Example 1.1.3). The covariant Hom-functor HomC(x,−) : C → D (see

Example 2.1.4) is left-exact but generally not right-exact.

To justify the claim that HomC(x,−) is left-exact, we will show that it

preserves finite limits. To do that, let I be a finite category, let D : I→ C be

a diagram in C, and denote by (c, {ψi}i) its limit. We want to show that the

pair (HomC(x, c), {HomC(x, ψi)}i) is the limit of the diagram HomC(x,−) ◦D.

To do that, let C be a set and fi : C → HomC(x,D(i)) be a function for

each i ∈ Obj(I). We must construct a function u : C → HomC(x, c) such that

ψi ◦ u = fi for all i ∈ Obj(I). To do that, first notice that, for each element

⋆ ∈ C, we have a family of functions {fi(⋆) : x→ D(i)}i. Since (c, {ψi}i) is the
limit of the diagram D, there exists a unique morphism u⋆ : x → c such that

ψi ◦u⋆ = fi(⋆). Hence, we can define a function u : C → HomC(x, c) by setting

u(⋆) = u⋆. The uniqueness of the function u follows from the uniquenesses of

each one of the morphisms u⋆.

To show that HomC(x,−) is not necessarily right-exact, consider the case

where C is abelian. Then, recall hat there exists a zero object 0 in C and that

HomC(x, 0) contains exactly one morphism (since 0 is also terminal). However,

the set with one element is not an initial object in the category of sets (see
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Example 1.2.6). This means that the functor HomC(x,−) does not preserve

initial objects, which are colimits of empty diagrams (see Example 2.3.9).

Hom-functors illustrate the case of functors that are left-exact and not right-

exact. In the next example, we will show a functor that is right-exact and not

left-exact.

Example 2.4.4. Let Sets be the category of sets (see Example 1.1.3), and

recall from Example 2.3.2 and Example 2.3.8 that all finite limits and colimits

exist in Sets. Then, choose a set S with more than one element and define a

functor F : Sets→ Sets by assigning:

• the set F (X) := S ×X to each set X,

• the function F (f) := (idS ×f) to each function f : X → Y .

We will show that this functor is right-exact but not left-exact.

To show that F preserves finite colimits, let I be a finite category and

D : I → Sets be a diagram in Sets. Recall from Example 2.3.8 that the

colimit of D is the pair (C, {ιi}i), where:

• C is the quotient of the set
⊔

iD(i) by the equivalence relation∼ generated

by di ∼ dj if di ∈ D(i), dj ∈ D(j), i, j ∈ Obj(I), and there exists a

morphism f ∈ HomI(i, j) such that D(f)(di) = dj,

• for each i ∈ Obj(I), the function ιi : D(i) → C identifies an element

di ∈ D(i) with its corresponding equivalence class inside
⊔

iD(i)/ ∼.

Hence, F (colimD) = (C × S, {ιi × idS}i).

Now, consider the diagram (F ◦ D) : I → Sets. We want to show that

the colimit of F ◦ D is the same as F (colimD). To do that, recall from

Example 2.3.8 again that colim(F ◦D) is the pair (C ′, {ϕi}i) where:

• C ′ is the quotient of the set
⊔

i(D(i) × S) by the equivalence relation

generated by (di, s) ≈ (dj, s
′) if di ∈ D(i), dj ∈ D(j), s, s′ ∈ S and there

exists a morphism f ∈ HomI(i, j) such that (D(f)× idS) (di, s) = (dj, s
′),

• for each i ∈ Obj(I), the function ϕi : D(i)× S → C ′ identifies an element

(di, s) ∈ D(i)× S with its equivalence class inside
⊔

i(D(i)× S)/ ≈.

Using these descriptions it becomes easy to see that F (C) = C ′ and F (ιi) = ϕi

for all i ∈ Obj(I). This shows that F preserves finite colimits.
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Now, to show that F does not preserve finite limits, we show that it fails

to preserve terminal objects. The terminal object in Sets is a set with one

element However, F ({•}) = S × {•} is not a terminal object in Sets, since S

has more than one element. Therefore, F does not preserve terminal objects,

which are limits of empty diagrams (see Example 2.3.3), and hence F is not

left-exact.

We have now seen functors that are fully exact, only left-exact and only

right-exact. To complete the picture, we will present an example of a functor

that fails to be exact in any sense.

Example 2.4.5. Consider the category of sets from Example 1.1.3. Recall

that all finite limits and colimits exist in this category (see Example 2.3.2

and Example 2.3.8). Then, let F : Sets → Sets be the functor defined by

assigning:

• the set {0, 1} to every set in Obj(Sets),

• the identity function of the set {0, 1} to every function in Mor(Sets).

This functor is neither left-exact nor right-exact. It is not left-exact because

it does not preserve terminal objects in Sets, which are the sets with one

element (see Example 1.2.6). It is not right-exact because it does not preserve

the initial object in Sets, which is the empty set (see Example 1.2.6). Since a

functor is left-exact if it preserves all finite limits (including terminal objects,

see Example 2.3.3) and right-exact if it preserves all finite colimits (including

initial objects, see Example 2.3.9), F is neither.

We close this section with a result that characterizes exact functors on

abelian categories in terms of kernels, cokernels and exact sequences.

Proposition 2.4.6. Let A and B be two abelian categories and F : A → B

be a functor.

(a) If all finite limits exist in A, then: F is left-exact if and only if F is

additive and F (ker(f)) = ker (F (f)) for every f ∈ Mor(A).

(b) If all finite colimits exist in A, then: F is right-exact if and only if F is

additive and F (coker(f)) = coker (F (f)) for every f ∈ Mor(A).

(c) If all finite limits and colimits exist in A, then: F is exact if and only if

F is additive and, for every exact sequence 0→ a→ b→ c→ 0 in A, the

sequence 0→ F (a)→ F (b)→ F (c)→ 0 is exact in B.
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Proof. We will prove only part (a), as he proof of part (b) is very similar to

that of part (a) and part (c) follows from part (a) and part (b).

On the one hand, assume F that is left-exact. First, we will prove that F

is additive. Since A is abelian, it has a zero object 0, which is terminal. Since

F preserves finite limits and terminal objects are finite limits, F preserves

terminal objects. In particular, F (0) is a terminal object of B. In an abelian

category, any terminal object is also initial. Hence F (0) is a zero object in B.

Now consider any two objects a and b of A. Their product a × b exists

and is a finite limit. Since F preserves finite limits, F (a × b) is isomorphic

to F (a) × F (b). In an abelian category, finite products coincide with finite

coproducts. This implies that F also preserves finite biproducts. Therefore,

F is additive.

The fact that F also preserves kernels follows from the fact that F preserves

finite limits and the fact that kernels (or, more generally, equalizers) are finite

limits.

On the other hand, assume F is additive and preserves kernels. We show

F preserves all finite limits. To do that, we will show that every finite limit

is isomorphic with the equalizer of certain morphisms between products in A.

This is a general construction that, in this case, will imply that F preserves

finite limits, since it is additive (preserves terminal objects and finite products)

and preserves kernels.

We begin by considering two finite products within A. First, define the

product P1 :=
∏

i∈Obj(I)D(i). Then, for each morphism f ∈ HomI(i, j), denote

the object j ∈ Obj(I) by jf , and define the product P2 :=
∏

f∈Mor(I)D(jf ).

The universal projections P1 → D(i) will be denoted by πi, while the universal

projections P2 → D(jf ) will be denoted by πf (see Definition 1.2.9).

Now, we will construct two morphisms between P1 and P2. To construct

the first one, notice that, for every f ∈ HomI(i, j), there is a morphism

πj ∈ HomA(P1, Dj). Hence, by the universal property of products (see Def-

inition 1.2.9), there exists a unique morphism u ∈ HomA(P1, P2) such that

πf ◦ u = πjf for all f ∈ Mor(A). To construct the second one, notice that

there is a morphism (D(f) ◦ πif ) ∈ HomA(P1, D(jf )) for every morphism

f ∈ HomI(if , jf ). Hence, by the universal property of products (see Defi-

nition 1.2.9), there exists a unique morphism v ∈ HomA(P1, P2) such that

πf ◦ v = D(f) ◦ πif for all f ∈ Mor(A).
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To finish this proof, we will show that the equalizer of u and v is the limit of

the diagram D. To do that, begin by denoting this equalizer by (E, e), where

E is an object of A and e ∈ HomA(E,P1) is the universal morphism such that

u ◦ e = v ◦ e (see Definition 1.5.1). Then, notice that (E, {πi ◦ e}i) is a cone

over D. In fact, if f ∈ HomI(i, j), then

D(f) ◦ (πi ◦ e) = (D(f) ◦ πi) ◦ e
= (πf ◦ v) ◦ e
= πf ◦ (v ◦ e)
= πf ◦ (u ◦ e)
= (πf ◦ u) ◦ e
= πj ◦ e.

This shows that (E, {πi ◦ e}i) is a cone over D. Next, given any cone (c, {ϕi}i)
over D, we have to construct a unique morphism w ∈ HomA(c, E) such that

(πi ◦ e) ◦ w = ϕi for all i ∈ Obj(I). To do that, first notice that the universal

property of products implies that there exists a morphism ϕ ∈ HomA(c, P1)

such that πi ◦ϕ = ϕi for all i ∈ Obj(I) (see Definition 1.2.9). Next, notice that

the fact that (c, {ϕi}i) is a cone over D implies that u ◦ ϕ = v ◦ ϕ. Hence, the
universal property of equalizers implies that there exists a unique morphism

w ∈ HomA(c, E) such that e ◦w = ϕ (see Definition 1.5.1). As a consequence,

πi ◦ e ◦w = πi ◦ϕ = ϕi for all i ∈ Obj(I). This completes the proof that (E, e)

is the limit of the diagram D in A. □

2.5. Adjoint Functors

The concept of adjoint functors captures one of the most fundamental re-

lationships in category theory: a natural correspondence between morphism

sets in two different categories. Adjunctions unify numerous mathematical

phenomena and universal properties. In this section, we will introduce the

abstract definition of adjoint functors, explore several key examples, and es-

tablish their basic properties regarding exactness.

Definition 2.5.1 (adjoint functors). Given two categories C and D, and a

pair of functors F : C→ D and G : D→ C, we say that F and G are adjoint

functors if there exist natural bijections

HomD(F (c), d) ∼= HomC(c,G(d)).
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In this case, we say that F is left adjoint to G, and that G is right adjoint to

F .

The definition above captures a fundamental pattern: having a morphism

from F (c) to d in D is equivalent to having a morphism from c to G(d) in C.

This correspondence preserves the relevant structure of morphism composition

through the naturality condition. This translation between categories mani-

fests in numerous mathematical contexts, as the following examples illustrate.

To build intuition, we begin with the simplest cases where a functor is adjoint

to itself.

Example 2.5.2. For every category C, the identity functor IdC : C → C is

both left and right adjoint to itself. Indeed, in this case, we have equalities:

HomC(IdC(c1), c2) = HomC(c1, c2) = HomC(c1, IdC(c2)).

The naturality condition is automatically satisfied since the identity functor

acts trivially on both objects and morphisms.

The identity adjunction, while simple, demonstrates the reflexive nature

of adjoint relationships. More interesting examples arise when the categories

involved have additional structure, particularly zero objects.

Example 2.5.3. Let A be an abelian category with zero object 0. The zero

functor Z : A → A, which assigns every object to 0 and every morphism to

the zero morphism id0 : 0→ 0, is both left and right adjoint to itself. Indeed,

we have natural bijections

HomA(Z(a1), a2) = HomA(0, a2)

= {0 : 0→ a2}
∼= {0 : a1 → 0}
= HomA(a1, 0)

= HomA(a1, Z(a2)).

The naturality of this bijection follows from the fact that composition with

any morphism involving the zero object always yields the zero morphism.

The example above is a particular case of a general phenomenon: every

universal construction gives rise to an adjunction. More precisely, limits and

colimits correspond to adjunctions between a category and a functor category

(or diagram category). While making this relationship fully rigorous requires
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the notion of natural transformations, which will be developed in subsequent

sections, we can already observe that universal properties inherently exhibit

the pattern of adjoint relationships.

The previous examples feature symmetric adjunctions where the same func-

tor serves as both left and right adjoint. More commonly, however, adjoint

relationships are asymmetric, with each functor playing a distinct role. A

paradigmatic example of such asymmetry is the adjunction between free and

forgetful functors, which we now examine.

Example 2.5.4. Let k be a field, let A be the category of k-vector spaces,

and let B be the category of sets. The forgetful functor F : A→ B is defined

by assigning:

• to each k-vector space, its underlying set,

• to each linear transformation, its underlying function.

The fact that F is a functor follows from the observation that the composition

of linear transformations is the composition of their underlying functions and

the observation that the identity linear transformation is the identity function

on the underlying set.

This functor F has a left adjoint G : B→ A, which is defined by assigning:

• to each set S, the vector space with basis S (the free vector space gener-

ated by S),

• to each function f : S → S ′, the unique linear transformation G(f) :

G(S)→ G(S ′) that extends f linearly:

G(f) (λ1s1 + · · ·+ λnsn) = λ1f(s1) + · · ·+ λnf(sn).

The fact that G is left adjoint to F , follows from the fact that there exist

natural bijections

HomA(G(S), V ) ∼= HomB(S, F (V )),

since any function from a set S to the underlying set of a vector space V

extends uniquely to a linear transformation from the vector space generated

by S to V .

This adjunction between freely generated and forgetful functors exemplifies a

pattern that appears throughout algebra. Another fundamental construction
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that leads to adjunctions is the tensor product of vector spaces, which we

examine next.

Example 2.5.5. Let k be a field and let C be the category of k-vector spaces.
Recall that the tensor product of k-vector spaces is defined as follows. Given

two k-vector spaces V andW , their tensor product is a k-vector space V ⊗kW

endowed with a bilinear map ι : V ×W → V ⊗k W satisfying the universal

property: for every k-vector space U and bilinear map B : V ×W → U , there

exists a unique linear transformation T : V ⊗k W → U such that B = T ◦ ι.
We will see how this universal property leads to an adjunction of functors.

First, notice that the tensor product induces a functor from C to itself.

Indeed, given a fixed k-vector space W , we have a functor F : C → C that

assigns:

• to each k-vector space V , the k-vector space F (V ) = V ⊗k W ,

• to each linear transformation T : V1 → V2, the linear transformation

F (T ) : V1 ⊗k W → V2 ⊗k W given by

F (T ) (v1 ⊗ w1 + · · · vn ⊗ wn) = T (v1)⊗ w1 + · · ·+ T (vn)⊗ wn.

The fact that F is a functor follows from the bilinearity of the tensor product:

F (idV ) = idV⊗W and F (T2 ◦ T1) = F (T2) ◦ F (T1).

To construct a right adjoint to F , recall the universal property of the tensor

product: for every k-vector space U and bilinear map B : V ×W → U , there

exists a unique linear transformation T : V ⊗k W → U such that B = T ◦ ι.
This establishes a bijection between linear transformations in HomC(V⊗kW,U)

and bilinear maps B : V ×W → U .

Now, observe that we can identify bilinear maps B : V ×W → U with linear

transformations ϕ : V → Homk(W,U) via the correspondence:

B(v, w) = (ϕ(v))(w).

Indeed, given a bilinear map B, for each v ∈ V , the map w 7→ B(v, w)

is linear in w, so it defines an element of Homk(W,U). The assignment

v 7→ (w 7→ B(v, w)) is linear in v by the bilinearity of B. Conversely, given

ϕ : V → Homk(W,U), define B(v, w) = (ϕ(v))(w), which is bilinear. These

constructions are mutually inverse.

Combining these bijections, we obtain natural bijections

HomC(V ⊗k W,U) ∼= HomC(V,Homk(W,U)).
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The naturality of these bijections follows from their construction via universal

properties. This means that the functor F (V ) = V ⊗kW is left adjoint to the

functor G(U) = Homk(W,U).

Having explored various examples of adjoint functors, we now turn to their

fundamental interaction with exactness properties. This relationship is par-

ticularly important in homological algebra, as it provides powerful tools for

transferring exact sequences between categories. The key result is that left ad-

joints preserve colimits while right adjoints preserve limits, and in particular,

left adjoints are right-exact while right adjoints are left-exact.

Proposition 2.5.6. Let C and D be categories with finite limits and colimits,

and let F : C→ D and G : D→ C be functors between these categories. If F

is left adjoint to G, then F is right-exact and G is left-exact.

Proof. We will prove that G is left-exact. The proof that F is right-exact is

completely analogous.

To show that G is left-exact, let I be a finite category and D : I → D be

a diagram in D. Since D has finite limits, there exists a limit of D, which we

denote by (d, {πi}i). We will show that the pair (G(d), {G(πi)}i) is the limit

of the diagram (G ◦D) : I→ C in C.

To do that, first, we verify that (G(d), {G(πi)}i) forms a cone over G ◦ D.

In fact, for every morphism f ∈ HomI(i, j), we have

G(D(f)) ◦G(πi) = G(D(f) ◦ πi) = G(πj),

since (d, {πi}i) is a cone over D and G is a functor.

Next, to verify that (G(d), {G(πi)}i) satisfies the universal property of the

limit of G ◦ D, let c be an object of C and {ϕi}i be a family of morphisms

such that G(D(f))◦ϕi = ϕj for every morphism f ∈ HomI(i, j). We will show

there exists a unique morphism v ∈ HomC(c,G(d)) such that G(πi) ◦ v = ϕi

for all i ∈ Obj(I).

Since F is left adjoint to G, each morphism ϕi : c → G(D(i)) corresponds

to a unique morphism ψi : F (c)→ D(i) in D via the adjunction bijection

HomC(c,G(D(i))) ∼= HomD(F (c), D(i)).

The naturality of these bijections and the fact that G(D(f)) ◦ ϕi = ϕj imply

that D(f)◦ψi = ψj for every morphism f ∈ HomI(i, j). Therefore, {ψi}i forms

a cone over the diagram D. By the universal property of the limit (d, {πi}i),
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there exists a unique morphism u ∈ HomD(F (c), d) such that πi ◦ u = ψi for

all i ∈ Obj(I). Now, the adjunction bijection

HomD(F (c), d) ∼= HomC(c,G(d))

assigns the morphism u to a unique morphism v ∈ HomC(c,G(d)). We claim

that this v satisfies G(πi) ◦ v = ϕi for all i ∈ Obj(I). This follows from the

naturality of the adjunction bijections applied to πi and the fact that πi◦u = ψi

corresponds to ϕi.

The uniqueness of v follows from the uniqueness of u and the bijectivity of

the adjunction. This shows that (G(d), {G(πi)}i) is the limit of the diagram

G ◦ D in C, which means that G preserves finite limits, or equivalently, that

G is a left-exact functor. □



Part III

Tensor categories

The central theme of this part is categories endowed with an internal mul-

tiplication, known as monoidal categories (or tensor categories). We formally

define the tensor bifunctors and the unit objects, paying particular attention

to the coherence constraints (the associator and unitor natural isomorphisms)

that govern them. Finally, we refine this structure by introducing commu-

tativity. We progress from braided monoidal categories, where the order of

tensor factors can be exchanged via an isomorphism, to symmetric monoidal

categories, where this exchange is involutive. These definitions provide the

essential framework for studying algebra-like structures within categories. We

begin this part, however, with the concepts of natural transformations and

equivalences of categories, which will be used throughout the remainder of the

text.

3.1. Natural Transformations

While functors relate categories, natural transformations relate functors

themselves. That is, they provide a way to compare two functors in a manner

that respects their underlying structures. In this section, we will define natu-

ral transformations, provide examples, and prove that natural transformations

can also be composed.

Definition 3.1.1. Given categories, C and D, and given functors between

them, F,G : C → D, a natural transformation η : F ⇒ G between these

functors consists of a family of morphisms,

{ηX : F (X)→ G(X) ∈ Mor(D) | X ∈ Obj(C)} ,

satisfying the following naturality condition:

G(f) ◦ ηX = ηY ◦ F (f) for every f ∈ HomC(X, Y ).

A natural transformation η : F ⇒ G is said to be a natural isomorphism when

ηX ∈ HomD(F (X), G(X)) is an isomorphism for all X ∈ Obj(C).
82
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To illustrate the abstract definition of a natural transformation given above,

we will start with the simplest example, that of the identity transformation.

Example 3.1.2. For any functor F : C → D, the identity natural transfor-

mation idF : F ⇒ F is given by

(idF )X = idF (X) for all X ∈ Obj(C).

The properties of the identity morphisms imply that idF satisfies the naturality

condition; in fact,

F (f) ◦ idF (X) = F (f) = idF (Y ) ◦F (f)

for every morphism f ∈ HomC(X, Y ). Notice that idF is also a natural iso-

morphism.

To give a less trivial example of a natural transformation, we will consider

a category with two objects and two functors from this category to itself.

Example 3.1.3. Let C be the category with two objects, Obj(C) = {A,B},
and three morphisms, Mor(C) = {idA, f, idB}, where f : A → B. There exist

three different functors from C to itself: the identity functor IdC; the functor

F : C→ C defined by

F (A) = F (B) = A and F (idA) = F (f) = F (idB) = idA;

and the functor G : C→ C defined by

G(A) = G(B) = B and G(idA) = G(f) = G(idB) = idB .

A natural transformation η : IdC ⇒ F would consist of two morphisms,

ηA : A→ A and ηB : B → A.

Since there exist no morphisms in HomC(B,A), no such natural transformation

exists. Similarly, no natural transformation η : IdC ⇒ G exists. Now, a natural

transformation η : F ⇒ G consists of two morphisms,

ηA : F (A)→ G(A) and ηB : F (B)→ G(B),

satisfying naturality conditions. Since F (A) = F (B) = A, G(A) = G(B) = B

and HomC(A,B) = {f}, then ηA = ηB = f . In this case, the naturality condi-

tions are satisfied, since F (ϕ) = idA and G(ϕ) = idB for all ϕ ∈ {idA, f, idB}.
In fact,

F (ϕ) ◦ ηA = idA ◦f = f = f ◦ idB = ηB ◦G(ϕ),
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for all ϕ ∈ {idA, f, idB}. This shows an example of a natural transformation

different from the identity one. Moreover, since f is not an isomorphism in D,

this natural transformation is also not a natural isomorphism.

In the next section, we will use natural transformations to define equiva-

lences of categories. Then, we will provide other examples of natural trans-

formations. Before that, we will state and prove a technical result regarding

natural transformations that will also be used in the next section.

Proposition 3.1.4. Let C,D be categories, let E,F,G,H : C → D be func-

tors, and let ζ : E ⇒ F , η : F ⇒ G, θ : G⇒ H be natural transformations.

(a) The family (θ ◦ η) : F ⇒ H, defined by

(θ ◦ η)X = θX ◦ ηX for each X ∈ Obj(C),

is a natural transformation.

(b) The natural transformations (θ ◦ η) ◦ ζ and θ ◦ (η ◦ ζ) are equal.

(c) The natural transformation η : F ⇒ G is a natural isomorphism if and

only if there exists a natural transformation η′ : G⇒ F such that

η′ ◦ η = idF and η ◦ η′ = idG .

Proof. (a) We need to verify that the family {(θ ◦η)X | X ∈ Obj(C)} satisfies
the corresponding naturality conditions. To do that, notice that, for every

morphism f ∈ HomC(X, Y ), we have

H(f) ◦ (θ ◦ η)X = H(f) ◦ (θX ◦ ηX)
= (H(f) ◦ θX) ◦ ηX
= (θY ◦G(f)) ◦ ηX
= θY ◦ (G(f) ◦ ηX)
= θY ◦ (ηY ◦ F (f))
= (θY ◦ ηY ) ◦ F (f)
= (θ ◦ η)Y ◦ F (f).

This shows that θ ◦ η satisfies the naturality conditions and thus, that it

is a natural transformation.

(b) From item (a), we know that (θ ◦η)◦ ζ and θ ◦ (η ◦ ζ) are natural transfor-
mations. Using their explicit definitions, we can see that, for every object
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X ∈ Obj(C), we have:

((θ ◦ η) ◦ ζ)X = (θ ◦ η)X ◦ ζX
= (θX ◦ ηX) ◦ ζX
= θX ◦ (ηX ◦ ζX)
= θX ◦ (η ◦ ζ)X
= (θ ◦ (η ◦ ζ))X .

This means that (θ ◦ η) ◦ ζ = θ ◦ (η ◦ ζ), as we wanted to show.

(c) Recall from Definition 3.1.1 that the natural transformation η : F ⇒ G

is a natural isomorphism when ηX is an isomorphism for all X ∈ Obj(C).

By Definition 1.2.1, this means that, for each object X of C, there exists

a morphism η′X : G(X)→ F (X) such that

η′X ◦ ηX = idF (X) and ηX ◦ η′X = idG(C) .

To finish this proof, we will show that the family {η′X | X ∈ Obj(C)} is
a natural transformation. To do that, let X and Y be objects of C, let f

be a morphism in HomC(X, Y ), and notice that:

F (f) ◦ η′X = idF (Y ) ◦F (f) ◦ η′X
= η′Y ◦ ηY ◦ F (f) ◦ η′X
= η′Y ◦G(f) ◦ ηX ◦ η′X
= η′Y ◦G(f) ◦ idG(X)

= η′Y ◦G(f).

This shows that η′ : G ⇒ F is a natural transformation. The fact that

η′ ◦ η = idF and η ◦ η′ = idG follows from the construction of η′. □

3.2. Equivalences of Categories

Equivalences of categories is the formal notion that captures the idea of

categories that “behave in the same way”. In this section, we will formally

define equivalences of categories, provide some examples illustrating when two

categories are equivalent or non-equivalent, and prove two results regarding

equivalences of categories that will be used in the subsequent sections.

We begin with the abstract definition of an equivalence of categories.
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Definition 3.2.1. A functor F : C → D is said to be an equivalence of cate-

gories when there exists a functor G : D→ C and two natural isomorphisms,

η and ϵ, such that:

η : IdC ⇒ G ◦ F and ϵ : F ◦G⇒ IdD .

In this case, one says that C and D are equivalent categories and denotes this

relation by C ≃ D.

Notice that “equivalence” is a weaker notion than that of “isomorphism” of

categories. Namely, an isomorphism of categories consists of a pair of functors,

F : C → D and G : D → C, such that G ◦ F = IdC and F ◦ G = IdD (strict

equality). This implies that, while isomorphisms of categories require a per-

fect one-to-one correspondence between objects and morphisms, equivalences

allow for more flexibility by ignoring “inessential” differences, such as multiple

isomorphic copies of objects. This difference makes equivalences of categories

often more useful in practice.

We turn now to some examples that illustrate these concepts. We begin

with the simplest example of an equivalence of categories, which incidentally

this is also an isomorphism of categories, that of the identity functor.

Example 3.2.2. Every category C is equivalent to itself via the identity

functor IdC : C → C (constructed in Example 2.1.2). In fact, if we take

F = G = IdC, we have that F ◦G = IdC ◦ IdC = IdC and G◦F = IdC ◦ IdC = IdC.

Hence, in this case, the natural isomorphisms η and ϵ can be chosen to be the

identity natural transformations (constructed in Example 3.1.2).

While the identity functor is an equivalence of a category with itself, more

interesting examples arise when comparing different categories.

Example 3.2.3. Let C be the category with one object, Obj(C) = {X}, and
one morphism, Mor(C) = {idX}. Then, letD be the category with two objects,

Obj(D) = {Y, Z}, and two non-identity morphisms, Mor(D) = {idY , idZ , f, g},
where f ∈ HomD(Y, Z), g ∈ HomD(Z, Y ), f ◦ g = idZ and g ◦ f = idY . These

categories are equivalent and non-isomorphic.

To see this, define the functor F : C→ D by choosing

F (X) = Y and F (idX) = idY ,

and define the functor G : D→ C by choosing

G(Y ) = G(Z) = X and G(idY ) = G(idZ) = G(f) = G(g) = idX .



NOTES ON CATEGORY THEORY 87

To show that F andG are equivalences of categories, we must construct natural

isomorphisms η and ϵ such that η : IdC ⇒ (G ◦ F ) and ϵ : (F ◦G)⇒ IdD.

Since G ◦ F is the identity functor on C, we can choose η to be the identity

natural transformation. Then, to construct ϵ, notice that the functor F ◦G is

given by:

(F ◦G)(Y ) = (F ◦G)(Z) = Y,

(F ◦G)(idY ) = (F ◦G)(idZ) = (F ◦G)(f) = (F ◦G)(g) = idY .

Hence, we must choose ϵY ∈ HomD(Y, Y ) and ϵZ ∈ HomD(Y, Z) satisfying the

naturality conditions. Since HomD(Y, Y ) = {idY } and HomD(Y, Z) = {f}, we
must choose ϵY = idY and ϵZ = f . To verify that this ϵ : (F ◦ G) ⇒ IdD

is indeed a natural transformation, we write down the naturality conditions

explicitly:

ϵY ◦ (F ◦G)(idY ) = idY ◦ idY = IdD(idY ) ◦ ϵY ,
ϵZ ◦ (F ◦G)(idZ) = f ◦ idY = idY ◦f = IdD(idZ) ◦ ϵZ ,

ϵZ ◦ (F ◦G)(f) = f ◦ idY = IdD(f) ◦ ϵY ,
ϵY ◦ (F ◦G)(g) = idY ◦ idY = idY = g ◦ f = IdD(g) ◦ ϵZ .

Moreover, notice that ϵY = idY and ϵZ = f are isomorphisms. This means

that ϵ is in fact a natural isomorphism.

The argument above shows that C and D are equivalent categories (and that

F and G are equivalences). However, these categories are not isomorphic. In

fact, since no functor G : D → C can be injective on objects and morphisms,

there exists no functor F : C → D such that (F ◦ G) is injective on objects

and morphisms. This implies that there exists no such functors F and G such

that (F ◦G) is equal to the identity functor IdD.

Not all small categories are equivalent, however. The next example shows a

case of explicit categories that are not equivalent.

Example 3.2.4. Let C be the category with one object and one morphism,

Obj(C) = {X} and Mor(C) = {idX}.

Then, let D be the category with two objects and only identity morphisms,

Obj(D) = {Y, Z} and Mor(D) = {idY , idZ}.

These categories are not equivalent.
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To see this, we explicitly construct all possible functors between these cat-

egories. We begin by constructing the unique functor from D to C. In fact,

notice that, since C has only one object, the only possible functor G : D→ C

is given by

G(Y ) = G(Z) = X and G(idY ) = G(idZ) = idX .

Then, notice that there are exactly two functors from C to D, determined by

which object of D is assigned to the object X. In fact, one can define a functor

F1 : C→ D by choosing

F1(X) = Y and F1(idX) = idY ,

and define a functor F2 : C→ D by choosing

F2(X) = Z and F2(idX) = idZ .

Now, recall from Definition 3.2.1 that, is order for C to be equivalent to

D, there must exist a natural transformation ϵ : F1 ◦ G ⇒ IdD or a natural

transformation θ : F2 ◦ G ⇒ IdD. In the first case, ϵZ should be a morphism

in HomD(Y, Z), which is empty; and in the second case, θY should be a mor-

phism in HomD(Z, Y ), which is also empty. This means that no such natural

transformations exist, and thus that C is not equivalent to D.

We close this section by showing that equivalence of categories is not just a

property but an equivalence relation on categories. This is formalized in the

following result.

Proposition 3.2.5. Equivalence of categories is an equivalence relation.

Proof. Begin by recalling from Example 3.2.2 that every category is equivalent

to itself via the identity functor. This means that the relation ≃ is reflexive.

Next, we will show that, if C ≃ D, then D ≃ C. To do that, we begin

by recalling from Definition 3.2.1 that, if C ≃ D, then there exist: a functor

F : C → D, a functor G : D → C, a natural isomorphism η : IdC ⇒ G ◦ F ,
and a natural isomorphism ϵ : F ◦ G ⇒ IdD. By Proposition 3.1.4(c), this

implies that there exist a natural isomorphism η′ : G ◦F ⇒ IdC and a natural

isomorphism ϵ′ : IdD ⇒ F ◦ G. This means exactly that D ≃ C, and shows

that the relation ≃ is symmetric.

To complete this proof, we will to show that, if A ≃ B and B ≃ C, then

A ≃ C. To do that, begin by assuming that A ≃ B and B ≃ C. Then, recall
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that the equivalence A ≃ B means that there exist: functors F1 : A → B

and G1 : B → A, and natural isomorphisms η1 : IdA ⇒ (G1 ◦ F1) and ϵ1 :

(F1 ◦ G1) ⇒ IdB. Similarly, recall that the equivalence B ≃ C means that

there exist: functors F2 : B → C and G2 : C → B, and natural isomorphisms

η2 : IdB ⇒ (G2 ◦ F2) and ϵ2 : (F2 ◦ G2) ⇒ IdC. Now, to prove that A ≃ C,

begin by noticing that (F2 ◦ F1) : A→ C and (G1 ◦G2) : C→ A are functors

(see Proposition 2.1.6). Thus, we only need to construct natural isomorphisms

ϕ : IdA ⇒ (G1 ◦G2 ◦ F2 ◦ F1) and ψ : (F2 ◦ F1 ◦G1 ◦G2)⇒ IdC.

We will construct the families {ϕA | A ∈ Obj(A)} and {ψC | C ∈ Obj(C)},
and then show that they define the desired natural isomorphisms. Begin by

defining, for each object A of A and for each object C of C, the morphisms

ϕA := G1

(
(η2)F1(A)

)
◦ (η1)A and ψC := F2

(
(ϵ1)G2(C)

)
◦ (ϵ2)C .

Now, we will show that the family {ϕA | A ∈ Obj(A)} defines a natural isomor-

phism. The proof that {ψC | C ∈ Obj(C)} also defines a natural isomorphism

is very similar. To unpack the definition of ϕA, begin by recalling that (η1)A
is an isomorphism, (η1)A : A→ G1(F1(A)). Then, recall that (η2)B is also an

isomorphism, (η2)B : B → G2(F2(B)), for every object B of B; in particular,

for B = F1(A). Hence, G((η2)F1(A)) is an isomorphism,

G1

(
(η2)F1(A)

)
: G1(F1(A))→ G1(G2(F2(F1(A)))),

and thus, ϕA is an isomorphism ϕA : A → G1(G2(F2(F1(A)))). To conclude

that ϕ is a natural isomorphism, we only need to show that {ϕA | A ∈ Obj(A)}
is in fact a natural transformation. To that end, one can use the fact that G1

is a functor and that η2 is a natural transformation to verify that

G1(G2(F2(F1(f)))) ◦ ϕA = G1(G2(F2(F1(f)))) ◦G1

(
(η2)F1(A)

)
◦ (η1)A

= G1

(
G2(F2(F1(f))) ◦ (η2)F1(A)

)
◦ (η1)A

= G1

(
(η2)F1(A′) ◦ F1(f)

)
◦ (η1)A

= G1

(
(η2)F1(A′)

)
◦G1(F1(f)) ◦ (η1)A

= G1

(
(η2)F1(A′)

)
◦ (η1)A′ ◦ f

= ϕA′ ◦ f,

for every pair of objects A,A′ of A and every morphism f ∈ HomA(A,A
′).

This proves that A ≃ C, that is, that the relation ≃ is also transitive, and

finishes the proof that ≃ is an equivalence relation. □
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3.3. Products of Categories

Before proceeding, we review products in general, and in particular, prod-

ucts of categories. Recall from Definition 1.2.9 that if C is a category and A,B

are two objects of C, then the product of A and B in C is a triple (P, pA, pB),

where P is an object of C and pA : P → A, pB : P → B are morphisms

satisfying a universal property.

For example, recall from Example 1.2.11 that the Cartesian product of sets,

together with their canonical projections, serves as the product in the category

of sets. Similarly, in the category of vector spaces over a fixed field, the direct

sum and their corresponding projections serve as the product.

In this section, we construct the category of small categories, describe the

product in this category, and prove that this product induces a functor satis-

fying certain properties. This construction will be used in the next section to

define monoidal categories.

We begin by considering the category of small categories.

Example 3.3.1. Let Cats be the category whose objects are small categories,

whose morphisms are functors between them, and whose composition is given

by Proposition 2.1.6(a). This is indeed a category: for every (small) category,

there exists an identity functor (see Example 2.1.2), and the composition of

functors is associative (see Proposition 2.1.6(b)).

Next, we describe the product of two categories within the category of small

categories constructed in the previous example.

Example 3.3.2. Consider the category of small categories, Cats, constructed

in Example 3.3.1. We construct the product of two small categories C and D

by providing a triple (C ×D, pC, pD), where C ×D is an object (a category),

and pC : C×D→ C and pD : C×D→ D are morphisms (functors) satisfying

condition (iv) in Definition 1.2.9.

We begin by constructing C ×D. Let the objects of C ×D be pairs (c, d),

where c is an object of C and d is an object of D; that is, Obj(C × D) is

the Cartesian product Obj(C)× Obj(D). Given two objects (c, d) and (c′, d′)

of C × D, a morphism between them is a pair (f, g), where f : c → c′ is a

morphism in C and g : d→ d′ is a morphism in D; that is,

HomC×D((c, d), (c
′, d′)) = HomC(c, c

′)× HomD(d, d
′).
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Composition of morphisms in C×D is defined component-wise; that is,

(f ′, g′) ◦
C×D

(f, g) := (f ′ ◦
C
f, g′ ◦

D
g) ,

for all (f, g) ∈ HomC×D((c, d), (c
′, d′)) and (f ′, g′) ∈ HomC×D((c

′, d′), (c′′, d′′)).

We now verify that this construction of C×D is indeed a small category, i.e.,

an object of Cats. First, notice that the objects of C×D forms a set because

both Obj(C) and Obj(D) are sets. Next, define the identity morphisms in

C×D by

id(c,d) = (idc, idd) for all (c, d) ∈ Obj(C×D).

Indeed,

(f, g) ◦ (idc, idd) = (f ◦ idc, g ◦ idd) = (f, g),

and

(idc′ , idd′) ◦ (f, g) = (idc′ ◦f, idd′ ◦g) = (f, g),

for every morphism (f, g) ∈ HomC×D((c, d), (c
′, d′)). Associativity of the com-

position of C×D follows directly from its component-wise definition and the

associativity of compositions of C and D.

Next, we construct the functors pC : C×D→ C and pD : C×D→ D. Define

pC by assigning:

• to each object (c, d) of C×D, the object c of C;

• to each morphism (f, g) ∈ HomC×D((c, d), (c
′, d′)), the morphism f in C.

To verify that pC is indeed a functor, we will check that it satisfies conditions

(i) and (ii) of Definition 2.1.1:

(i) For any object (c, d) of C×D,

pC(id(c,d)) = pC(idc, idd) = idc .

(ii) For any composable morphisms (f, g) and (f ′, g′) as above,

pC ((f
′, g′) ◦ (f, g)) = pC(f

′ ◦ f, g′ ◦ g) = f ′ ◦ f = pC(f
′, g′) ◦ pC(f, g).

This concludes the verification that pC is a functor. Similarly, define pD by

assigning:

• to each object (c, d) of C×D, the object d of D;

• to each morphism (f, g) ∈ HomC×D((c, d), (c
′, d′)), the morphism g in D.



92 TIAGO MACEDO

The verification that pD is a functor is very similar to the one for pC.

To complete this example, we verify that the triple (C×D, pC, pD) satisfies

the universal property of the product in Cats (see Definition 1.2.9). Namely,

we will verify that, if X is a small category for which there exist functors

FC : X→ C and FD : X→ D, then there exists a unique functor F : X→ C×D
such that

pC ◦ F = FC and pD ◦ F = FD.

Define F by assigning:

• to each object x of X, the object (FC(x), FD(x)) of C×D;

• to each morphism f ∈ HomX(x, y), the morphism (FC(f), FD(f)).

The fact that pC ◦F = FC and pD ◦F = FD follows directly from the definition

of F . Thus, we are left to verify that F is indeed a functor. To do that, we

will check that it satisfies conditions (i) and (ii) of Definition 2.1.1. Indeed:

(i) For each object x of X, using the fact that FC and FD are functors and

the form of the identity morphism of C×D given above, we have:

F (idx) = (FC(idx), FD(idx)) = (idFC(x), idFD(x)) = id(FC(x),FD(x)) = idF (x) .

(ii) To verify the second condition, let x, y, z be objects of X, f ∈ HomX(x, y)

and g ∈ HomX(y, z). Using the definition of F , the fact that FC and FD

are functors, and the form of the composition on C×D, we have:

F (g ◦ f) = (FC(g ◦ f), FD(g ◦ f))
= (FC(g) ◦ FC(f), FD(g) ◦ FD(f))

= (FC(g), FD(g)) ◦ (FC(f), FD(f))

= F (g) ◦ F (f).

This concludes the proof that the triple (C×D, pC, pD) satisfies the defining

conditions of the product in Cats. Thus, we conclude that (C×D, pC, pD) is

the product of the categories C and D.

We close this section by proving that products define a functor satisfying

certain properties. These properties will become axioms of monoidal categories

in the next section.

Proposition 3.3.3. Let C be a category.
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(a) If C has finite products, then there exists a functor Π : C×C→ C induced

by these products.

(b) There exists a natural isomorphism α : Π ◦ (Π× idC)⇒ Π ◦ (idC×Π).

(c) If C has a terminal object ⊮, then there exist natural isomorphisms

{λc : ⊮× c→ c | c ∈ Obj(C)} and {ϱc : c× ⊮→ c | c ∈ Obj(C)} .

(d) For each quadruple of objects a, b, c, d of C, we have

αa,b,c×d ◦ αa×b,c,d = (ida×αb,c,d) ◦ αa,b×c,d ◦ (αa,b,c × idd).

(e) For each pair of objects a, b of C, we have

(ida×λb) ◦ αa,⊮,b = (ϱa × idb).

Proof. (a) We begin by defining Π. Since the category C is assumed to have

finite products, for any object (a, b) of C×C, the product of a and b in C is

a triple (a×b, pa, pb) (see Definition 1.2.9). We will assign Π(a, b) := a×b.
Now, consider a morphism (f : a→ a′, g : b→ b′) of C×C. The product

Π(f, g) will be defined as the unique morphism f×g : a× b→ a′× b′ such
that pa′ ◦(f×g) = (f ◦pa) and pb′ ◦(f×g) = (g◦pb). The well-definiteness
(existence and uniqueness) of f × g follows from the universal property of

products (see Definition 1.2.9).

Now, we will verify that Π, as defined above, is a functor. That is, we

will verify that Π satisfies conditions (i) and (ii) of Definition 2.1.1:

(i) Given an object (a, b) of C×C, we must check that Π(id(a,b)) = idΠ(a,b).

Since idΠ(a,b) = ida×b and id(a,b) = (ida, idb), this is equivalent to the

equations:

pa ◦ ida×b = pa = ida ◦pa and pb ◦ ida×b = pb = idb ◦pb.

(ii) Given two morphisms of C × C, namely (f, g) : (a, b) → (a′, b′) and

(f ′, g′) : (a′, b′)→ (a′′, b′′), we must check that

Π((f ′, g′) ◦ (f, g)) = Π(f ′, g′) ◦ Π(f, g).
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Since (f ′, g′)◦(f, g) = (f ′◦f, g′◦g), this is equivalent to the equations:

pa′′ ◦ ((f ′ × g′) ◦ (f × g)) = (pa′′ ◦ (f ′ × g′)) ◦ (f × g)
= (f ′ ◦ pa′) ◦ (f × g)
= f ′ ◦ (pa′ ◦ (f × g))
= f ′ ◦ (f ◦ pa)
= (f ′ ◦ f) ◦ pa

and

pb′′ ◦ ((f ′ × g′) ◦ (f × g)) = (pb′′ ◦ (f ′ × g′)) ◦ (f × g)
= (g′ ◦ pb′) ◦ (f × g)
= g′ ◦ (pb′ ◦ (f × g))
= g′ ◦ (g ◦ pb)
= (g′ ◦ g) ◦ pb.

This completes the proof that Π is a functor.

(b) We want to construct a natural isomorphism

α : Π ◦ (Π× idC)⇒ Π ◦ (idC×Π).

Since

(Π ◦ (Π× id))(a, b, c) = Π((a× b), c) = (a× b)× c

and

(Π ◦ (id×Π))(a, b, c) = Π(a, (b× c)) = a× (b× c),
for every triple of objects a, b, c of C, this is equivalent to constructing a

family of isomorphisms

{αa,b,c : (a× b)× c→ a× (b× c) | a, b, c ∈ Obj(C)}

that satisfies naturality conditions.

Fix a triple of objects a, b, c ∈ Obj(C). Using the universal property of

the product a× (b× c), the morphism αa,b,c is uniquely determined by a

pair of morphisms:

fa : (a× b)× c→ a and fb,c : (a× b)× c→ b× c.

Similarly, using the universal property of the product b× c, the morphism

fb,c is uniquely determined by a pair of morphisms

fb : (a× b)× c→ b and fc : (a× b)× c→ c.
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Choose fa = (pa ◦ pa×b), fb = (pb ◦ pa×b) and fc = pc. Thus, we will define

αa,b,c to be the unique morphism in HomC((a × b) × c, a × (b × c)) such
that

pa ◦ αa,b,c = fa = pa ◦ pa×b and pb×c ◦ αa,b,c = fb,c,

where fb,c is the unique morphism in HomC((a× b)× c, b× c) such that

pb ◦ fb,c = fb = pb ◦ pa×b and pc ◦ fb,c = fc = pc.

To show that αa,b,c is an isomorphism, we will construct its inverse. Let

α̃a,b,c be the unique morphism in HomC(a× (b× c), (a× b)× c) such that:

(pa ◦ pa×b) ◦ αa,b,c = pa, (pb ◦ pa×b) ◦ αa,b,c = pb ◦ pb×c,

pc ◦ α̃a,b,c = pc ◦ pb×c.

By construction, αa,b,c◦α̃a,b,c is a morphism in HomC(a×(b×c), a×(b×c))
such that

pa ◦ (αa,b,c ◦ α̃a,b,c) = (pa ◦ αa,b,c) ◦ α̃a,b,c = (pa ◦ pa×b) ◦ α̃a,b,c = pa,

(pb ◦ pb×c) ◦ (αa,b,c ◦ α̃a,b,c) = (pb ◦ pa×b) ◦ α̃a,b,c = pb ◦ pb×c,

(pc ◦ pb×c) ◦ (αa,b,c ◦ α̃a,b,c) = pc ◦ α̃a,b,c = pc ◦ pb×c.

Since

pa ◦ ida×(b×c) = pa, (pb ◦ pb×c) ◦ ida×(b×c) = pb ◦ pb×c,

(pc ◦ pb×c) ◦ ida×(b×c) = pc ◦ pb×c,

the universal property of a× (b× c) implies that αa,b,c ◦ α̃a,b,c = ida×(b×c).

Similarly, we can verify that α̃a,b,c ◦ αa,b,c = id(a×b)×c. This implies that

αa,b,c is an isomorphism.

Finally, to show that α satisfies the naturality conditions, consider three

morphisms, f : a→ a′, g : b→ b′ and h : c→ c′, in C. We need to verify

that

(f × (g × h)) ◦ αa,b,c = αa′,b′,c′ ◦ ((f × g)× h).
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Notice that

pa′ ◦ ((f × (g × h)) ◦ αa,b,c) = (pa′ ◦ (f × (g × h))) ◦ αa,b,c

= (f ◦ pa) ◦ αa,b,c

= f ◦ (pa ◦ αa,b,c)

= f ◦ (pa ◦ pa×b)

= (f ◦ pa) ◦ pa×b

= (pa′ ◦ (f × g)) ◦ pa×b

= pa′ ◦ ((f × g) ◦ pa×b)

= pa′ ◦ (pa′×b′ ◦ ((f × g)× h))
= (pa′ ◦ pa′×b′) ◦ ((f × g)× h)
= (pa′ ◦ αa′,b′,c′) ◦ ((f × g)× h)
= pa′ ◦ (αa′,b′,c′ ◦ ((f × g)× h)) .

Similarly, we can verify that

(pb′ ◦ pb′×c′) ◦ ((f × (g × h)) ◦ αa,b,c)

= (pb′ ◦ pb′×c′) ◦ (αa′,b′,c′ ◦ ((f × g)× h))

and

(pc′ ◦ pb′×c′) ◦ ((f × (g × h)) ◦ αa,b,c)

= (pc′ ◦ pb′×c′) ◦ (αa′,b′,c′ ◦ ((f × g)× h)) .

The constructions of α and of the product of morphisms in C via universal

properties, and these identities imply that

(f × (g × h)) ◦ αa,b,c = αa′,b′,c′ ◦ ((f × g)× h).

This shows that α is a natural transformation and concludes the proof of

this part.

(c) We want to construct natural isomorphisms λ and ϱ. To do that, let

c be an object of C, let 1 be a terminal object of C, and recall from

Definition 1.2.9 that the product of the objects c and 1 in C is a triple

(c× 1, pc, p1), where c×1 is an object of C and pc : c×1→ c, p1 : c×1→ 1

are morphisms of C. We will define λc = pc for all c ∈ Obj(C).

To show that λc is an isomorphism for every object c of C, we will use

the fact that 1 is a terminal object of C. In fact, fix an object c ∈ Obj(C),

and recall from Definition 1.2.4 that, for each object x of C, there exists a
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unique morphism tx : x→ 1; in particular, for c and for c×1. This means

that there exist morphisms tc : c→ 1 and idc : c→ c. Thus, the universal

property that (c × 1, pc, p1) satisfies (see Definition 1.2.9) implies that,

there exists a unique morphism µc : c→ c× 1 such that pc ◦ µc = idc and

p1 ◦ µc = tc. This first equation implies that

λc ◦ µc = pc ◦ µc = idc .

It also implies that µc ◦ λc is a morphism (c× 1)→ (c× 1) such that

pc ◦ (µc ◦ λc) = pc ◦ (µc ◦ pc) = (pc ◦ µc) ◦ pc = idc ◦pc = pc

and p1 ◦ (µc ◦λc) = tc×1. Since idc×1 is also a morphism (c×1)→ (c×1)

that satisfies

pc ◦ idc×1 = pc and p1 ◦ idc×1 = tc×1,

the universal property of (c× 1, pc, p1) implies that µc ◦ λc = idc×1. This

shows that λc ◦ µc = idc and µc ◦ λc = idc×1, and as a consequence, that

λc is an isomorphism.

Now, we will verify that λ = {λp | p ∈ Obj(C)} is a natural transfor-

mation, that is, that it the satisfies naturality conditions. To do that, let

f : c→ c′ be a morphism of C. From the definition of λ and the definition

of the product of morphisms, we see that

λc′ ◦ (id1×f) = pc′ ◦ (id1×f) = f ◦ pc = f ◦ λc.

This shows that λ is a natural transformation, and completes the proof

that λ is a natural isomorphism. The construction of ϱ and the proof that

ϱ is a natural isomorphism are completely analogous.

(d) We want to prove that

αa,b,c×d ◦ αa×b,c,d = (ida×αb,c,d) ◦ αa,b×c,d ◦ (αa,b,c × idd).

Since they are morphisms in HomC(((a×b)×c)×d, a×(b×(c×d))), we will
use the universal properties of products and compare their projections. In

fact, using the definition of α (see item (b)) and of products of morphisms
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(see item (a)), we obtain the following identities:

pa ◦ αa,b,c×d ◦ αa×b,c,d

= pa ◦ pa×b ◦ p(a×b)×c

= pa ◦ (ida×αb,c,d) ◦ αa,b×c,d ◦ (αa,b,c × idd),

pb ◦ pb×(c×d) ◦ αa,b,c×d ◦ αa×b,c,d

= pb ◦ pa×b ◦ p(a×b)×c

= pb ◦ pb×(c×d) ◦ (ida×αb,c,d) ◦ αa,b×c,d ◦ (αa,b,c × idd),

pc ◦ pc×d ◦ pb×(c×d) ◦ αa,b,c×d ◦ αa×b,c,d

= pc ◦ p(a×b)×c

= pc ◦ pc×d ◦ pb×(c×d) ◦ (ida×αb,c,d) ◦ αa,b×c,d ◦ (αa,b,c × idd),

pd ◦ pc×d ◦ pb×(c×d) ◦ αa,b,c×d ◦ αa×b,c,d

= pd

= pd ◦ pc×d ◦ pb×(c×d) ◦ (ida×αb,c,d) ◦ αa,b×c,d ◦ (αa,b,c × idd),

Since these projections are equal, the universal property of a×(b×(c×d))
implies that αa,b,c×d ◦ αa×b,c,d and (ida×αb,c,d) ◦ αa,b×c,d ◦ (αa,b,c × idd) are

both equal to the unique morphism in ((a× b)× c)×d→ a× (b× (c×d))
that satisfy these identities. This shows that

αa,b,c×d ◦ αa×b,c,d = (ida×αb,c,d) ◦ αa,b×c,d ◦ (αa,b,c × idd).

(e) Let a, b, c be a triple of objects of C. We want to prove that

(ida×λb) ◦ αa,b,c = ϱa × idb .

To do that, recall from the definition of the product of morphisms in C (see

item (a)) that ϱa× idb is the unique morphism in HomC((a×1)× b, a× b)
such that

pa ◦ (ϱa × idb) = ϱa ◦ pa×1 and pb ◦ (ϱa × idb) = idb ◦pb.

Thus, to show that (ida×λb) ◦ αa,b,c = ϱa × idb is equivalent to show that

pa ◦ ((ida×λb) ◦ αa,b,c) = ϱa ◦ pa×1

and

pb ◦ ((ida×λb) ◦ αa,b,c) = idb ◦pb.
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The first identity follows from the definition of the product of morphisms

in C, the definition of α (see item (b)) and the definition of ϱ (see item (c)):

pa ◦ ((ida×λb) ◦ αa,1,b) = (pa ◦ (ida×λb)) ◦ αa,1,b

= (ida ◦pa) ◦ αa,1,b

= pa ◦ αa,1,b

= pa ◦ pa×1

= ϱa ◦ pa×1.

Similarly, the second identity follows from the definition of the product

of morphisms in C, the definition of α (see item (b)) and the definition of

λ (see item (c)):

pb ◦ ((ida×λb) ◦ αa,1,b) = (pb ◦ (ida×λb)) ◦ αa,1,b

= (λb ◦ p1×b) ◦ αa,1,b

= (pb ◦ p1×b) ◦ αa,1,b

= pb.

Since (ida×λb)◦αa,1,b satisfies these identities, we conclude that it is equal

to ϱ× idb. □

3.4. Monoidal Categories

Monoidal categories are categories with a structure that mimics that of

products (as seen in the previous section) and tensor products on vector spaces.

In this section, we will define monoidal categories and provide several examples

that illustrate their abstract definition.

Definition 3.4.1. A category C is said to be monoidal when it is equipped

with a functor ⊗ : C× C→ C satisfying the following conditions:

(i) There is a natural isomorphism

{αx,y,z : (x⊗ y)⊗ z → x⊗ (y ⊗ z) | x, y, z ∈ Obj(C)} .

(ii) There is an object 1 ∈ Obj(C) such that, there exist natural isomorphisms

{λx : 1⊗ x→ x | x ∈ Obj(C)} and {ϱx : x⊗ 1→ x | x ∈ Obj(C)} .

(iii) For every quadruple (a, b, c, d) of objects of C, we have

(ida⊗αb,c,d) ◦ αa,b⊗c,d ◦ (αa,b,c ⊗ idd) = αa,b,c⊗d ◦ αa⊗b,c,d.
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((a⊗ b)⊗ c)⊗ d

(a⊗ (b⊗ c))⊗ d

(a⊗ b)⊗ (c⊗ d)

a⊗ (b⊗ (c⊗ d))

a⊗ ((b⊗ c)⊗ d)

αa,b,c ⊗ idd

αa⊗b,c,d

αa,b,c⊗d

αa,b⊗c,d ida ⊗αb,c,d

(x⊗ 1)⊗ y x⊗ (1⊗ y)

x⊗ y

αx,1,y

ϱx ⊗ idy idx⊗λy

Figure 3.4.1. Diagrams of pentagon and triangle identities

(iv) For every pair (x, y) of objects of C, we have

(idx⊗λy) ◦ αx,1,y = ϱx ⊗ idy .

In this case, the functor ⊗ is called tensor product, the object 1 is called

identity object, the equality in item (iii) is called pentagon identity, and the

one in item (iv) is called triangle identity (see Figure 3.4.1).

To illustrate the abstract definition above, we will consider a few concrete

examples of categories with a monoidal structure and a category with no

monoidal structure. We begin with the smallest monoidal category possible.

Example 3.4.2. Consider the smallest category possible, that is, the category

C with one object, Obj(C) = {•}, one morphism Mor(C) = {id•}, and trivial

composition, id• ◦ id• = id•. In order to introduce a monoidal structure on

this category, we must define a tensor functor.

To that end, begin by noticing that the category C× C also has one object,

Obj(C×C) = {(•, •)}, and one morphism, Mor(C×C) = {id(•,•)} = {(id•, id•)}
(see Example 3.3.2). Hence, there exists only one functor ⊗ : C × C → C,

namely, the functor given by

• ⊗ • = • and id•⊗ id• = id• .

In order to show that (C,⊗) is a monoidal category, we will verify that the

conditions (i)-(iv) are satisfied.

(i) Since • is the only object of C, the only triple of objects of C is (•, •, •).
Hence, in this case, the natural transformation α consists of a morphism,

α•,•,•. Moreover, since • ⊗ • = •, then

(• ⊗ •)⊗ • = • ⊗ • = • and • ⊗(• ⊗ •) = • ⊗ • = •.
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Thus, in this case, we can choose α•,•,• = id• to be the isomorphism

α•,•,• : (• ⊗ •)⊗ • → • ⊗ (• ⊗ •).

(ii) Since Obj(C) = {•}, then ⊮ must be •. Moreover, the natural transfor-

mation λ will consist of a unique morphism,

λ• : 1⊗ • → •,

and similarly, the natural transformation ϱ will consist of a unique mor-

phism,

ϱ• : • ⊗ 1→ •.
Now, since 1⊗ • = • ⊗ • = •, we can choose the morphism λ• to be id•,

which is an isomorphism

id• = λ• : 1⊗ • → •.

Similarly, since • ⊗ 1 = • ⊗ • = •, we can also choose the morphism ϱ•
to be id•, which is an isomorphism

id• = ϱ• : • ⊗ 1→ •.

(iii) Since Obj(C) = {•}, then the only quadruple of objects of C is (•, •, •, •).
Moreover, since • ⊗ • = • and α•,•,• = id, then the left-hand side of the

pentagon identity is

(id•⊗α•,•,•) ◦ α•,•,• ◦ (α•,•,• ⊗ id•)(((• ⊗ •)⊗ •)⊗ •)
= (id•⊗α•,•,•) ◦ α•,•,•((• ⊗ (• ⊗ •))⊗ •)
= (id•⊗α•,•,•)(• ⊗ ((• ⊗ •)⊗ •))
= (• ⊗ (• ⊗ (• ⊗ •)))
= • ⊗ (• ⊗ •)
= • ⊗ •
= •.

And the right-hand side of the pentagon identity is also

α•,•,• ◦ α•,•,•(((• ⊗ •)⊗ •)⊗ •) = α•,•,•((• ⊗ •)⊗ (• ⊗ •))
= • ⊗ (• ⊗ (• ⊗ •))
= • ⊗ (• ⊗ •)
= • ⊗ •
= •.
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(iv) Since • is the only object of C, then the only pair of objects of C is (•, •).
Moreover, since 1 = • and λ• = α•,•,• = ϱ• = id•, then the left-hand side

of the triangle identity is

(id•⊗λ•) ◦ α•,•,•((• ⊗ •)⊗ •) = (id•⊗λ•)(• ⊗ (• ⊗ •))
= • ⊗ •
= •.

And the right-hand side of the triangle identity is also

ϱ• ◦ α•,•,•((• ⊗ •)⊗ •) = ϱ•(• ⊗ (• ⊗ •))
= ϱ•(• ⊗ •)
= •.

This shows that the pair (C,⊗) is indeed a monoidal category.

As mentioned in the previous section, products also induce monoidal struc-

tures in the category of small categories.

Example 3.4.3. Recall from Proposition 3.3.3 that products induce functors

on categories that admit finite products. Moreover, this functor satisfies con-

ditions (i)-(iv) of Definition 3.4.1. This means that any category that admits

finite products admits a monoidal structure. Similarly, one can verify that any

category that admits finite coproducts also admits a monoidal structure.

As we mentioned in the beginning of this section, the functor⊗ in a monoidal

category is a generalization of the tensor product of vector spaces. In the next

example, we verify that, in fact, the usual tensor product endows the category

of vector spaces with a monoidal structure.

Example 3.4.4. Let k be a field and let C denote the category of vector

spaces over k. That is, the objects of C are the vector spaces over k, the
morphisms of C are the linear transformations between these vector spaces,

and the composition is the usual composition of functions (see Example 1.5.8).

Now, let ⊗ be the functor that assigns the usual tensor product V ⊗kW to

a pair of k-vector spaces (V,W ) and assigns the linear transformation

(T1 ⊗ T2) : V1 ⊗k V2 → W1 ⊗k W2,
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given by

(T1 ⊗ T2)

(
n∑

i=1

λi v1,i ⊗ v2,i

)
=

n∑
i=1

λi T1(v1,i)⊗ T2(v2,i),

to a pair of linear transformations (T1 : V1 → W1, T2 : V2 → W2). In order to

show that (C,⊗) is a monoidal category, we will verify that the conditions

(i)-(iv) are satisfied.

(i) Recall (for instance, from [KM97, §4.2.2]) that, for each triple (V1, V2, V3)

of k-vector spaces, there is a linear isomorphism

αV1,V2,V3 : (V1 ⊗ V2)⊗ V3 → V1 ⊗ (V2 ⊗ V3),

given explicitly by

αV1,V2,V3

(
n∑

i=1

λi (v1,i ⊗ v2,i)⊗ v3,i

)
=

n∑
i=1

λi v1,i ⊗ (v2,i ⊗ v3,i).

To verify that α is a natural transformation, let (W1,W2,W3) be another

triple of k-vector spaces and T1 : V1 → W1, T2 : V2 → W2, T3 : V3 → W3

be a triple of linear transformations. The naturality condition is satisfied

by α because

T1 ⊗ (T2 ⊗ T3)

(
αV1,V2,V3

(
n∑

i=1

λi(vi,1 ⊗ v2,i)⊗ v3,i

))

= T1 ⊗ (T2 ⊗ T3)

(
n∑

i=1

λivi,1 ⊗ (v2,i ⊗ v3,i)

)

=
n∑

i=1

λiT1(vi,1)⊗ (T2(v2,i)⊗ T3(v3,i))

is equal to

αW1,W2,W3

(
(T1 ⊗ T2)⊗ T3

(
n∑

i=1

λi(vi,1 ⊗ v2,i)⊗ v3,i

))

= αW1,W2,W3

(
n∑

i=1

λi(T1(vi,1)⊗ T2(v2,i))⊗ T3(v3,i)

)

=
n∑

i=1

λiT1(vi,1)⊗ (T2(v2,i)⊗ T3(v3,i)),
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for all n ≥ 0, λ1, . . . , λn ∈ k, v1,1, . . . , v1,n ∈ V1, v2,1, . . . , v2,n ∈ V2 and

v3,1, . . . , v3,n ∈ V3. This shows that α is in fact a natural isomorphism.

(ii) Define the identity object 1 as the 1-dimensional vector space k. Then,

recall (for instance, from [KM97, §4.1.7]) that, for each k-vector space V ,

there is a linear isomorphism λV : k⊗k V → V , explicitly given by

λV

(
n∑

i=1

αi ⊗ vi

)
=

n∑
i=1

αivi.

To verify that λ is also a natural transformation, let W be another k-
vector space and T : V → W be a linear transformation. The naturality

condition is satisfied by λ because

T

(
λV

(
n∑

i=1

αi ⊗ vi

))
= T

(
n∑

i=1

αivi

)
=

n∑
i=1

αiT (vi)

is equal to

λW

(
idk⊗T

(
n∑

i=1

αi ⊗ vi

))
= λW

(
n∑

i=1

αi ⊗ T (vi)

)
=

n∑
i=1

αiT (vi),

for all n ≥ 0, α1, . . . , αn ∈ k and v1, . . . , vn ∈ V . This shows that λ is a

natural isomorphism.

Next, recall that, for each k-vector space V , there is also a linear iso-

morphism ϱV : V ⊗k k→ V , explicitly given by

ϱV

(
n∑

i=1

vi ⊗ αi

)
=

n∑
i=1

αivi.

The verification that ϱ is a natural transformation is very similar to the

one shown above for λ.

(iii) Let V1, V2, V3, V4 be four k-vector spaces and v1 ∈ V1, v2 ∈ V2, v3 ∈ V3 and
v4 ∈ V4 be vectors in these vector spaces. In this case, the left side of the

pentagon inequality is

(idV1 ⊗αV2,V3,V4) ◦ αV1,V2⊗V3,V4 ◦ (αV1,V2,V3 ⊗ idV4)(((v1 ⊗ v2)⊗ v3)⊗ v4)
= (idV1 ⊗αV2,V3,V4) ◦ αV1,V2⊗V3,V4((v1 ⊗ (v2 ⊗ v3))⊗ v4)
= (idV1 ⊗αV2,V3,V4)(v1 ⊗ ((v2 ⊗ v3)⊗ v4))
= v1 ⊗ (v2 ⊗ (v3 ⊗ v4)).
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And the right side of the pentagon identity is

αV1,V2,V3⊗V4 (αV1⊗V2,V3,V4(((v1 ⊗ v2)⊗ v3)⊗ v4))
= αV1,V2,V3⊗V4((v1 ⊗ v2)⊗ (v3 ⊗ v4))
= v1 ⊗ (v2 ⊗ (v3 ⊗ v4)).

Since these two sides are equal, we conclude that α satisfies the pentagon

identity.

(iv) Let V1, V2 be a pair of k-vector spaces, let v1 ∈ V1 and v2 ∈ V2 be vectors,
and let k ∈ k be a scalar. Since the identity object 1 is the 1-dimensional

vector space k, the left side of the triangle identity is

(idV1 ⊗λV2) (αV1,k,V2 ((v1 ⊗ k)⊗ v2)) = (idV1 ⊗λV2) (v1 ⊗ (k ⊗ v2))
= v1 ⊗ (kv2)

= k(v1 ⊗ v2).

And the right side of the right side of the triangle identity is

ϱV1 ⊗ idV2 ((v1 ⊗ k)⊗ v2) = (kv1)⊗ v2 = k(v1 ⊗ v2).

Since these two sides are equal, we conclude that the triangle identity is

also satisfied.

This shows that conditions (i)-(iv) are satisfied, and hence that the usual tensor

product endows the category of vector spaces with a monoidal structure.

To close this section we will construct a category which admits no monoidal

structure. To help us do that, we will prove the following general result.

Proposition 3.4.5. Let (C,⊗) be a monoidal category. If we denote its iden-

tity object by 1, then HomC(1,1) is an abelian monoid with respect to the

composition of C.

Proof. We begin by showing that (HomC(1,1), ◦) is a monoid. Indeed, since ◦
is the composition of the category C, it is an associative operation. Moreover,

since C is a category, there exists a morphism, id1 ∈ HomC(1,1), which satisfies

id1 ◦f = f and f ◦ id1 = f for all f ∈ HomC(1,1).

This shows that (HomC(1,1), ◦) is a monoid.

Next, we will use the fact that λ1 = ϱ1 to show that this monoid is abelian.

(The proof of this fact will be given in Lemma 3.4.7.) Since λ is a natural
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isomorphism, for each pair of morphisms f, g ∈ HomC(1,1), we have

f ◦ λ1 = λ1 ◦ (id1⊗f) and g ◦ λ1 = λ1 ◦ (id1⊗g),

or equivalently,

f = λ1 ◦ (id1⊗f) ◦ λ−1
1 and g = λ1 ◦ (id1⊗g) ◦ λ−1

1 .

Similarly, since ϱ is also a natural isomorphism, we also have

f = ϱ1 ◦ (f ⊗ id1) ◦ ϱ−1
1 and g = ϱ1 ◦ (g ⊗ id1) ◦ ϱ−1

1 .

Hence, using the fact that λ1 = ϱ1, we obtain that

f ◦ g =
(
ϱ1 ◦ (f ⊗ id1) ◦ ϱ−1

1

)
◦
(
λ1 ◦ (id1⊗g) ◦ λ−1

1

)
= ϱ1 ◦ (f ⊗ g) ◦ λ−1

1

= λ1 ◦ (f ⊗ g) ◦ ϱ−1
1

=
(
λ1 ◦ (id1⊗g) ◦ λ−1

1

)
◦
(
ϱ1 ◦ (f ⊗ id1) ◦ ϱ−1

1

)
= g ◦ f. □

Using the result above, we can now easily construct a category which admits

no monoidal structure.

Example 3.4.6. Let S3 denote the group of permutations of a set with three

elements. Recall that this is a non-abelian group and, in particular, a non-

abelian monoid. If we consider a category C with one object, Obj(C) = {•}, six
morphisms, Mor(C) = HomC(•, •) = S3, and composition induced by the com-

position of permutations in S3, according to Proposition 3.4.5, this category

admits no monoidal structure.

To formally complete the proof of Proposition 3.4.5, we will prove the fol-

lowing technical result.

Lemma 3.4.7. Let (C,⊗) be a monoidal category. If we denote by 1 its

identity object and by λ, ϱ the natural isomorphisms

{λx : 1⊗ x→ x | x ∈ Obj(C)} and {ϱx : x⊗ 1→ x | x ∈ Obj(C)} ,

then we have λ1 = ϱ1.

Proof. We will begin by proving that

id1⊗ (λx ⊗ idy) = (id1⊗λx⊗y) ◦ (id1⊗α1,x,y)
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for every pair of objects x, y of C. In fact, using the pentagon identity for

a = b = 1, c = x and d = y, the triangle identity and the naturality of α, we

see that

(id1⊗λx⊗y) ◦ (id1⊗α1,x,y)

= (id1⊗λx⊗y) ◦ α1,1,x⊗y ◦ α1⊗1,x,y ◦ (α1,1,x ⊗ idy)
−1 ◦ α−1

1,1⊗x,y

= (ϱ1 ⊗ idx⊗y) ◦ α1⊗1,x,y ◦ (α1,1,x ⊗ idy)
−1 ◦ α−1

1,1⊗x,y

= α1,x,y ◦ ((ϱ1 ⊗ idx)⊗ idy) ◦ (α1,1,x ⊗ idy)
−1 ◦ α−1

1,1⊗x,y

= α1,x,y ◦ ((id1⊗λx)⊗ idy) ◦ α−1
1,1⊗x,y

= id1⊗ (λx ⊗ idy) .

Now, we will use the identity proved in the previous paragraph to prove

that λx ⊗ idy = λx⊗y ◦ α1,x,y for every pair of objects x, y of C. In fact, using

the naturality of λ and α, we see that

λx ⊗ idy = λx⊗y ◦ (id1⊗ (λx ⊗ idy)) ◦ λ−1
(1⊗x)⊗y

= λx⊗y ◦ (id1⊗ (λx⊗y ◦ α1,x,y)) ◦ λ−1
(1⊗x)⊗y

= λx⊗y ◦ α1,x,y.

Now, we will use the identity λx ⊗ idy = λx⊗y ◦ α1,x,y to show that

λ1 ⊗ id1 = ϱ1 ⊗ id1 .

In fact, if we choose x = y = 1, the identity λx ⊗ idy = λx⊗y ◦ α1,x,y becomes

λ1 ⊗ id1 = λ1⊗1 ◦ α1,1,1.

Using the naturality of λ, we obtain that λ1⊗1 = id1⊗λ1, which implies that

the identity above becomes

λ⊮ ⊗ id1 = (id1⊗λ1) ◦ α1,1,1.

Now, using the triangular identity (Definition 3.4.1 (iv)) with x = y = 1, we

obtain that

λ⊮ ⊗ id1 = ϱ1 ⊗ id1 .



108 TIAGO MACEDO

To conclude this proof, we will use the identity λ1 ⊗ id1 = ϱ1 ⊗ id1 to show

that λ1 = ϱ1. In fact, using the naturality of ϱ, we see that

ϱ1 = λ1 ◦ ϱ1⊗1 ◦ (λ1 ⊗ id1)
−1

= λ1 ◦ ϱ1⊗1 ◦ (ϱ1 ⊗ id1)
−1

= λ1 ◦ ϱ1⊗1 ◦ ϱ−1
1⊗1

= λ1. □

3.5. Braided and Symmetric Monoidal Categories

Braided and symmetric categories are monoidal categories also equipped

with a structure that generalizes the commutativity for tensor products. For-

mally, this structure is a natural isomorphism that identifies objects that differ

by the order in which they are tensored. In this section, we will present the ab-

stract definitions of braided and symmetric monoidal categories and illustrate

these definitions with concrete examples.

Definition 3.5.1. A monoidal category (C,⊗) is said to be braided when it

is equipped with a natural isomorphism

{σx,y : x⊗ y → y ⊗ x | x, y ∈ Obj(C)}

that satisfies the following identities:

(i) αb,c,a ◦ σa, b⊗c ◦ αa,b,c = (idb⊗σa,c) ◦ αb,a,c ◦ (σa,b ⊗ idc),

(ii) αb,c,a ◦ σ−1
b⊗c, a ◦ αa,b,c = (idb⊗σ−1

c,a) ◦ αb,a,c ◦ (σ−1
b,a ⊗ idc).

In this case, the natural isomorphism σ is called braiding and the identities

(i) and (ii) are called hexagon identities (see Figure 3.5.1). Moreover, the

category C is said to be symmetric when σy,x ◦ σx,y = idx⊗y for every pair of

objects x, y of C.

To illustrate the abstract definition above, we will consider some concrete

examples. We begin with the smallest monoidal category.

Example 3.5.2. Recall from Example 3.4.2 that the smallest category, the

category C with one object, Obj(C) = {•}, one morphism, Mor(C) = {id•},
and composition given by id• ◦ id• = id•, admits a monoidal structure, explic-

itly given by

• ⊗ • = • and id•⊗ id• = id• .
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(a⊗ b)⊗ c

a⊗ (b⊗ c) (b⊗ c)⊗ a

b⊗ (c⊗ a)

(b⊗ a)⊗ c b⊗ (a⊗ c)

αa,b,c

σa,b⊗c

αb,c,a

σa,b ⊗ idc

αb,a,c

idb⊗σa,c

(a⊗ b)⊗ c

a⊗ (b⊗ c) (b⊗ c)⊗ a

b⊗ (c⊗ a)

(b⊗ a)⊗ c b⊗ (a⊗ c)

αa,b,c

σ−1
b⊗c, a

αb,c,a

σ−1
b,a ⊗ idc

αb,a,c

idb⊗σ−1
c,a

Figure 3.5.1. Diagrams of hexagon identities

Since this category has only one object and one morphism, the identity is a

braiding on it. In fact, id• is an isomorphism • ⊗ • → • ⊗ •. Moreover, since

id• ◦ id• = id•, this braided monoidal category is also symmetric.

In the next example, we verify that the monoidal category of vector spaces

is also braided and symmetric.

Example 3.5.3. Let k be a field and C be the category of vector spaces over k.
Recall from Example 3.4.4 that the usual tensor product endows this category

with a monoidal structure. We will show that there exists also a symmetric

braiding on C

In fact, recall (for instance, from [KM97, §4.2.3]) that, for every pair of k-
vector spaces V,W , there exists a linear isomorphism σV,W : V ⊗W → W ⊗V ,

explicitly given by

σV,W

(
n∑

i=1

λi(vi ⊗ wi)

)
=

n∑
i=1

λi(wi ⊗ vi).

We will verify that the family {σV,W | V,W ∈ Obj(C)} defines a natural trans-

formation and satisfies the hexagon identities.

To verify that σ is a natural transformation, let T : V → V ′, S : W → W ′

be a pair of linear transformations. We want to check that

(S ⊗ T ) ◦ σV,W = σV ′,W ′ ◦ (T ⊗ S).
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In fact, observe that

(S ⊗ T )

(
σV,W

(
n∑

i=1

λi(vi ⊗ wi)

))
= S ⊗ T

(
n∑

i=1

λi(wi ⊗ vi)

)

=
n∑

i=1

λi(S(wi)⊗ T (vi))

= σV ′,W ′

(
n∑

i=1

λi(T (vi)⊗ S(wi))

)

= σV ′,W ′

(
(T ⊗ S)

(
n∑

i=1

λi(vi ⊗ wi)

))
,

for all λ1, . . . , λn ∈ k, v1, . . . , vn ∈ V and w1, . . . , wn ∈ W . This shows that σ

defines a natural transformation, and thus, a natural isomorphism.

Next, we will verify that σ satisfies the hexagon identities. To do that, fix a

triple of k-vector spaces, V,W,U . Then, identity (i) in Definition 3.5.1 follows

from the fact that

αb,c,a (σa, b⊗c (αa,b,c((v ⊗ w)⊗ u))) = αb,c,a (σa, b⊗c(v ⊗ (w ⊗ u)))
= αb,c,a((w ⊗ u)⊗ v)
= w ⊗ (u⊗ v)

is equal to

(idb⊗σa,c) (αb,a,c ((σa,b ⊗ idc)((v ⊗ w)⊗ u))) = (idb⊗σa,c) (αb,a,c((w ⊗ v)⊗ u))
= (idb⊗σa,c)(w ⊗ (v ⊗ u))
= w ⊗ (u⊗ v),

for all v ∈ V , w ∈ W and u ∈ U . Similarly, identity (ii) in Definition 3.5.1

follows from the fact that

αb,c,a

(
σ−1
b⊗c,a (αa,b,c((v ⊗ w)⊗ u))

)
= αb,c,a

(
σ−1
b⊗c,a(v ⊗ (w ⊗ u))

)
= αb,c,a((w ⊗ u)⊗ v)
= w ⊗ (u⊗ v)
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is equal to

(idb⊗σ−1
c,a)
(
αb,a,c

(
(σ−1

b,a ⊗ idc)((v ⊗ w)⊗ u)
))

= (idb⊗σ−1
c,a) (αb,a,c((w ⊗ v)⊗ u))

= (idb⊗σ−1
c,a)(w ⊗ (v ⊗ u))

= w ⊗ (u⊗ v),

for all v ∈ V , w ∈W and u ∈ U .

We close this section by constructing an example of a monoidal category

that is not braided.

Example 3.5.4. To construct a monoidal category that is not braided, we

will begin by constructing a small non-abelian monoid. In fact, consider the

set M = {e, a, b}, endowed with the operation · :M ×M →M defined by

e · e = e, e · a = a, e · b = b,

a · e = a, a · a = a, a · b = a,

b · e = b, b · a = b, b · b = b.

One can see that e is the identity element in (M, ·), and one can explicitly

check that the operation · is associative. This means that (M, ·) is a monoid.

Now, consider the category C with three objects, Obj(C) = M , three mor-

phisms, Mor(C) = {ide, ida, idb}, and the obvious composition,

ide ◦ ide = ide, ida ◦ ida = ida and idb ◦ idb = idb .

We can endow the category C with a monoidal structure by defining

x⊗ y := x · y and idx⊗ idy = idx·y for all x, y ∈ Obj(C).

In fact, the identity object 1 is e and the natural isomorphisms α, λ, ϱ are all

equal to the identity one (see Example 3.1.2).

Now, since a⊗ b = a · b = a, b⊗a = b ·a = b, and there exists no morphisms

in HomC(a, b), the monoidal category (C,⊗) cannot be braided.



Part IV

Stratifications

In this part of these notes, we introduce the notion of stratification of abelian

categories. This concept provides a way to decompose an abelian category

into simpler layers, each of which interacts with the others in a controlled

manner. It generalizes familiar decompositions from algebraic geometry and

representation theory, such as filtrations by support or by weight, to an ab-

stract categorical framework.

To define stratifications rigorously, we must first develop a few key notions.

We begin by recalling the concept of subcategory, the categorical analogue of

subsets, subspaces and subgroups. Among these, certain subcategories known

as Serre subcategories play a central role in abelian settings: they are precisely

those for which one can construct meaningful quotient categories. The corre-

sponding quotient construction, called Serre quotient, allows us to collapse a

Serre subcategory while preserving exactness. In turn, this leads naturally to

the concept of recollement, which formalizes how an abelian category can be

reconstructed from a subcategory and its quotient.

Each of these constructions contributes to the definition of stratification: a

stratification of an abelian category is, informally, a layered structure built

from a finite sequence of recollements indexed by a poset. Hence, the goal of

this part is thus twofold: to build the categorical tools necessary for defining

stratifications, and to illustrate how these tools mirror well-known construc-

tions in algebraic geometry and homological algebra.

4.1. Subcategories

Just as we study subspaces of vector spaces and subgroups of groups, we

can also consider subcategories of a given category. A subcategory consists of a

selection of objects and morphisms from the ambient category that themselves

form a category under the same composition law. In this section, we define

subcategories and illustrate this definition with some basic examples.
112
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Definition 4.1.1 (subcategory). Given a category C, a subcategory D of C

consists of a collection of objects Obj(D) ⊆ Obj(C) and a collection of mor-

phisms Mor(D) ⊆ Mor(C) satisfying the following conditions:

(i) For every object d ∈ Obj(D), the identity morphism idd is in Mor(D),

(ii) For every pair of morphisms, f, g ∈ Mor(D), such that f ∈ HomC(a, b)

and g ∈ HomC(b, c), the objects a, b, c are in Obj(D) and the morphism

(g ◦C f) is in Mor(D).

In this case, one denotes Mor(D) ∩ HomC(a, b) by HomD(a, b), for every pair

of objects a, b ∈ Obj(D). Moreover, one says that the subcategory D of C is

full when HomD(a, b) = HomC(a, b), for every pair of objects a, b ∈ Obj(D).

Notice that, ifD is a subcategory of a category C, then (Obj(D),Mor(D), ◦C)
is also a category. This means that this definition captures the intuitive idea

that a subcategory is a substructure that respects the categorical structure of

the ambient category. The next examples illustrate this definition, beginning

with the simplest cases.

Example 4.1.2. Given a category C, the category C is a subcategory of itself.

At the other extreme, the empty subcategory is the one with no objects and

no morphisms.

While the example above is simple, it establishes that subcategories exist

in abundance. In the next example, we will construct full subcategories of a

category.

Example 4.1.3. Given a category C, for every choice of a subset Obj(D) of

Obj(C), if we choose HomD(a, b) to be HomC(a, b) for every pair of objects

a, b ∈ Obj(D), then we obtain a full subcategory of C.

The examples above are general, but examining a small enough category to

list all the possibilities will also help to understand the definition of subcate-

gories. We close this section with one such example. It shows that even for a

small category, there can be multiple subcategories, some full and some not.

Example 4.1.4. Consider a category C with two objects, Obj(C) = {a, b},
and three morphisms, Mor(C) = {ida, f, idb}, where {f} = HomC(a, b). The

subcategories of C are:

• The empty subcategory,
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• The subcategory with Obj(D) = {a} and Mor(D) = {ida},

• The subcategory with Obj(D) = {b} and Mor(D) = {idb},

• The subcategory with Obj(D) = {a, b} and Mor(D) = {ida, idb},

• The entire category C.

Notice that, if we chose Obj(D) = {a} and Mor(D) = {ida, f}, then we

would not obtain a subcategory, because f ∈ HomC(a, b) ∩Mor(D) and b /∈
Obj(D). Using similar arguments we can show that no other choice of Obj(D)

and Mor(D) would form a subcategory of C.

The notion of subcategory provides the basic setting for all subsequent con-

structions in this part of these notes, including Serre subcategories, quotient

categories, and recollements.

4.2. Serre Subcategories

In the study of abelian categories, it is natural to consider subcategories that

are well-behaved with respect to the abelian structure. Among these, Serre

subcategories play a distinguished role: they are precisely the subcategories

that admit a quotient construction producing another abelian category. In this

section, we define Serre subcategories and present a few examples. Intuitively,

a Serre subcategory is one that is closed under taking subobjects, quotients,

and extensions.

Definition 4.2.1 (Serre subcategory). Given an abelian category A, a full

subcategory S of A is called a Serre subcategory when Obj(S) ̸= ∅ and, for

every short exact sequence 0 → a → b → c → 0 in A, we have: b ∈ Obj(S) if

and only if a ∈ Obj(S) and c ∈ Obj(S).

This definition has a clear two-out-of-three flavour: the middle term of a

short exact sequence is an object of S precisely when the outer terms are. To

understand this condition better, we begin with the most basic examples.

Example 4.2.2. For every abelian category A, the zero subcategory (that

is, the full subcategory S for which Obj(S) = {0}) and the whole category

(S = A) are Serre subcategories of A.

While the example above is simple, it establishes that every abelian category

possesses at least one Serre subcategory. The first non-trivial examples arise

from vector spaces.
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Example 4.2.3. Let k be a field and A be the abelian category of k-vector
spaces (see Example 1.8.2). Then, let S be the full subcategory of A such that

Obj(S) consists of the finite-dimensional k-vector spaces. To show that S is

a Serre subcategory, notice that, for every short exact sequence of k-vector
spaces 0 → W → V → U → 0, we have that: V is finite-dimensional if

and only if W and U are finite-dimensional. In fact, this follows from the

additivity of dimensions (also known as Rank-Nullity Theorem, in this case),

dimV = dimW + dimU .

This example shows how Serre subcategories can capture size constraints.

Similar constructions appear throughout algebraic geometry, where support

conditions play an analogous role.

Example 4.2.4. Let X be a Noetherian scheme and let A = Coh(X) be

the category of coherent sheaves on X. For any closed subset Z ⊆ X, the

subcategory

SZ = {F ∈ Coh(X) | Supp(F) ⊆ Z}

is a Serre subcategory. To verify this, suppose

0→ F → G→ H→ 0

is a short exact sequence of coherent sheaves. Then Supp(G) = Supp(F) ∪
Supp(H), which shows that G has support in Z if and only if both F and H

have support in Z. This construction is fundamental to the theory of perverse

sheaves and provides the building blocks for stratifications by support, as we

will see in the next section.

The next example shows a case of a subcategory of an abelian which is not

a Serre subcategory.

Example 4.2.5. Let A be the abelian category of abelian groups (see Exam-

ple 1.8.3) and B be the full subcategory of A for which Obj(B) = {Z}. To

show that B is not a Serre subcategory of A, recall from Example 2.3.22 that

there exists a short exact sequence in A of the form 0→ Z→ Z→ Z/2Z→ 0.

Since Z ∈ Obj(B) and Z/2Z /∈ Obj(B), this implies that B is not a Serre

subcategory of A.

We will close this series of examples with an important example that will

be used in the subsequent section, that of the kernel subcategory.
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Example 4.2.6. Let A and B be abelian categories and F : A → B be an

exact functor. The kernel of F , denoted Ker(F ), is defined to be the full

subcategory of A for which Obj(Ker(F )) = {a ∈ A | F (a) = 0}. To show that

Ker(F ) is a Serre subcategory of A, let 0→ a→ b→ c→ 0 be a short exact

sequence in A and recall from Proposition 2.4.6 that 0 → F (a) → F (b) →
F (c)→ 0 is a short exact sequence in B.

Now, on the one hand, assume that F (b) = 0. In this case, the exactness

of the sequence 0 → F (a) → 0 → F (c) → 0 at F (a) implies that F (a) = 0

and the exactness of this sequence at F (c) implies that F (c) = 0. On the

other hand, suppose that F (a) = F (c) = 0. In this case, the exactness of the

sequence 0 → 0 → F (b) → 0 → 0 at F (b) implies that F (b) = 0. This shows

that Ker(F ) is indeed a Serre subcategory of A, a fact that will be used in the

next section.

We close this section on Serre subcategories by showing that every Serre

subcategory of an abelian category is also abelian.

Proposition 4.2.7. Let A be an abelian category. If S is a Serre subcategory

of A, then S is also an abelian category.

Proof. Recall that an abelian category is a pre-additive, additive, pre-abelian

category, in which every monomorphism is the kernel and every epimorphism

is the cokernel of a morphism. We will successively verify that, when S is a

Serre subcategory of an abelian category, it has each one of these properties.

To verify that S is a pre-additive category, recall that it is a full subcategory

of A. This means that HomS(a, b) = HomA(a, b) for all a, b ∈ Obj(S). Since

A is assumed to be an abelian (and, in particular, pre-additive) category, we

see that every HomS(a, b) is an abelian group when endowed with the group

structure of HomA(a, b).

To verify that S is an additive category, we will show that S has an initial

object and finite products. To verify that S has a zero object (which is both

initial and terminal), first recall that Obj(S) is non-empty. Hence we can fix

an object a ∈ Obj(S). Then recall from Example 2.3.23 that 0 → a
ida−→ a →

0 → 0 is a short exact sequence in A. Since a ∈ Obj(S) and S is a Serre

subcategory of A, we obtain that 0 ∈ Obj(S) as well. Finally, since 0 is an

initial (and terminal) object of A, we conclude that 0 is an initial object of S.
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To verify that every pair of objects a, b ∈ Obj(S) has a product in S, recall

that, since A is an abelian category (and, in particular, additive), the product

a × b exists in A. Moreover, recall from Example 2.3.24 that there is a short

exact sequence 0 → a → (a × b) → b → 0 in A. Since a, b ∈ Obj(S) and S is

a Serre subcategory of A (by hypothesis), we conclude that a × b ∈ Obj(S).

This shows that S is an additive category.

To verify that S is a pre-abelian category, we will verify that every morphism

in S has a kernel and cokernel in S. To do that, let f ∈ HomS(a, b) be a

morphism in S. Since f is also a morphism in A and A is an abelian category

(by hypothesis), the kernel and cokernel of f are in A. Then, recall from

Example 2.3.25 that there is a short exact sequence 0 → ker(f) → a →
im(f) → 0 in A. Since a ∈ Obj(S) and S is a Serre subcategory of A (by

hypothesis), this implies that ker(f) and im(f) are also in S.

To finish this proof, we verify that every monomorphism is the kernel and

every epimorphism is the cokernel of a morphism in S. This follows from

the fact that the kernels and cokernels of morphisms in S are in S and the

hypothesis that A is an abelian category. □

In the next section we will see how Serre subcategories allow us to form

quotient categories, extending this idea further.

4.3. Serre Quotients

In many areas of mathematics, one often simplifies a structure by identifying

or quotienting out certain substructures. Since Serre subcategories behave

well with respect to the abelian structure, they are precisely the subcategories

that admit such a quotient construction. In this section, we formalise this

process in the context of abelian categories by defining their quotients by

Serre subcategories. First, we present the abstract definition, then illustrate

it with examples, and finally describe its explicit construction.

Definition 4.3.1 (Serre quotient). Given an abelian category A and a Serre

subcategory S, the quotient category A/S is an abelian category satisfying the

following universal property:

• There exists an exact functor Q : A → A/S, such that Q(s) = 0 for all

s ∈ Obj(S),
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• If B is an abelian category and there exists an exact functor F : A → B

such that F (s) = 0 for all s ∈ Obj(S), then there exists a unique functor

F : A/S→ B such that F ◦Q = F .

This definition, while technical, characterizes the quotient category by a

universal property. The intuition behind it is that A/S is the largest abelian

category obtained from A by making all objects in S become zero, while pre-

serving exactness. To help understand this definition, we begin with the most

basic case.

Example 4.3.2. Let A be any abelian category and let S be the full subcat-

egory of A such that Obj(S) = {0}. In this case, the quotient category A/S

is equivalent to A itself. Indeed, let the functor Q : A→ A/S be the identity

functor on A. Recall from Example 2.4.2 that Q = IdA is exact. Then, notice

that Q(0) = 0. Next, let B be an abelian category and F : A → B is any

exact functor such that F (0) = 0. Finally, notice that a functor F : A→ B is

such that F = F ◦Q = F ◦ IdA = F if and only if F = F . This confirms that

A satisfies the universal property for the quotient A/S.

While the quotient by zero changes nothing, the quotient of a category by

itself kills everything. This opposite extreme illustrates how the Serre quotient

can collapse an entire category.

Example 4.3.3. Let A be any abelian category and S be the A category itself.

In this case, the quotient category A/S is equivalent to the zero category (that

is, the category with a single object 0 and only the morphism id0). Indeed, let

Q : A→ A/S be the functor that sends every object to 0 and every morphism

to id0. Notice that Q is an exact functor, since 0 → 0 → 0 → 0 → 0 is an

exact sequence. Next, let B be an abelian category and F : A → B be an

exact functor such that F (a) = 0 for all a ∈ Obj(A) = Obj(S). The unique

functor F : A/S→ B (which sends 0 to 0 and id0 to id0) satisfies the equation

F ◦Q = F . This shows that the Serre quotient by the entire category is trivial.

Having seen some examples above, we now turn to the explicit description

of Serre quotients. The following result provides a concrete construction of the

quotient category. To state this result, we will introduce the following notation.

When x and x′ are objects of a category and there exists a monomorphism

x → x′, we will say that x is a subobject of x′ and denote it by x ⊆ x′.

Further, when x is a subobject of x′, that is, when there exists a monomorphism
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i : x→ x′, we will denote the cokernel of this monomorphism by x′/x and call

it the quotient of x′ by x.

Theorem 4.3.4. Let A be a small abelian category and S be a Serre subcat-

egory.

(a) The relation defined by (a, b) ≤ (a′, b′) if and only if a′ ⊆ a and b ⊆ b′ is

a pre-order on the set Obj(A)×Obj(A).

(b) For each pair of objects a, b ∈ Obj(A), the set I(a, b) defined by

{(x, y) ∈ Obj(A)×Obj(A) | x ⊆ a, a/x ∈ Obj(S), y ⊆ b and y ∈ Obj(S)}

is a directed set when endowed with the pre-order ≤ induced from the set

Obj(A)×Obj(A).

(c) The triple (Obj(Q), Mor(Q), ◦Q) given by

Obj(Q) = Obj(A), HomQ(a, b) = colimI(a,b) HomA(x, y),

and ◦Q induced from ◦A via the colimit forms a category.

(d) The category Q = (Obj(Q), Mor(Q), ◦Q) is abelian.

(e) The functor Q : A→ Q defined by

Q(a) = a and Q(f) = colimI(a,b)(f),

for all a, b ∈ Obj(A) and f ∈ HomA(a, b), is exact and moreover Q(s) = 0

for all s ∈ Obj(S).

(f) For every abelian category B and every exact functor F : A → B such

that F (s) = 0 for all s ∈ S, there exists a unique functor F : Q→ B such

that F ◦Q = F .

This theorem provides an explicit construction for the quotient category.

This construction using colimits of morphisms is technical but makes the quo-

tient category computable in examples. The proof of this result is also technical

and can be found in [Gab62, III.1]. Instead of providing a proof for it, we will

use it to explicitly describe a quotient of the category of vector spaces.

Example 4.3.5. Let k be a field, A be the abelian category of k-vector spaces,
and S be the Serre subcategory of A consisting of finite-dimensional k-vector
spaces. The quotient category A/S can be constructed as follows. The ob-

jects of A/S are k-vector spaces and the morphisms are linear transforma-

tions. Two vector spaces V and W are isomorphic is A/S if and only if they
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are isomorphic modulo finite-dimensional subspaces. (In particular, any two

finite-dimensional k-vector spaces are isomorphic in A/S.) And two linear

transformations T, S : V → W represent the same morphism in A/S if they

differ by a map that factors through finite-dimensional spaces. Intuitively,

A/S records only the infinite-dimensional part of each vector space.

This example shows how Serre quotients provide a way to collapse a subcat-

egory. In the next section, we will see how such quotients fit into the broader

framework of recollements, which describe how an abelian category can be

assembled from a subcategory and its quotient.

4.4. Recollements

After constructing Serre quotients, it is natural to ask how an abelian cate-

gory can be reconstructed from a subcategory and its quotient. The notion of

recollement (French for “gluing”) answers this question. This notion formal-

izes the idea of decomposing a category into simpler pieces that fit together

coherently. Introduced by Beilinson, Bernstein, and Deligne in their work on

perverse sheaves, recollements provide a framework for understanding how a

category can be reconstructed from a subcategory and a quotient category.

In this section, we define recollements of abelian categories and illustrate this

concept through several examples.

Definition 4.4.1 (recollement). A recollement of an abelian category A is a

diagram of abelian categories and functors of the form

A′ A A′′,

i!

i∗

i∗

j∗

j∗

j!

such that:

(i) (i∗, i∗, i
!) and (j!, j

∗, j∗) are adjoint triples,

(ii) the functors i∗, j! and j∗ are fully faithful,

(iii) i∗ ◦ j! = 0,

(iv) for every object A ∈ A, there exist natural exact sequences

j!j
∗A→ A→ i∗i

∗A→ 0 and 0→ i∗i
!A→ A→ j∗j

∗A.
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In this case, we say that A is a recollement of A′ and A′′.

Intuitively, a recollement is a generalized abstract splitting property in an

exact sequence of categories and functors. The splitting on the left not neces-

sarily being equal to the splitting on the right. Hence, this definition encodes

a rich structure with many consequences. To build intuition about it, we begin

with the most elementary case of recollement, where the decomposition is as

simple as possible.

Example 4.4.2. Given an abelian category A, if we choose A′ = A and

A′′ = 0, we obtain A as the following recollement of A′ and A′′:

A A 0.

IdA

IdA

IdA

0

0

0

To justify this claim, we will verify that the diagram above satisfies conditions

(i)-(iv) of Definition 4.4.1.

(i) To show that (IdA, IdA, IdA) is an adjoint triple, notice that

HomA(IdA(a), b) = HomA(a, b) = HomA(a, IdA(b)),

for all a, b ∈ Obj(A), and to show that (0, 0, 0) is also an adjoint triple,

notice that

HomA(0(a), b) = HomA(0, b) = {0} = HomA(a, 0) = HomA(a, 0(b)),

for all a, b ∈ Obj(A).

(ii) To show that IdA and 0 are fully faithfull, first recall from Example 2.2.2

that IdA is a fully faithful functor. The fact that 0 : 0 → A is also fully

faithful follows from the fact that

Hom0(0, 0) = {0} = HomA(0, 0).

(iii) The fact that IdA ◦ 0 = 0 ◦ IdA = 0 follows direct from the definition of 0.

(iv) The exactness of the sequences

0(a)→ a→ IdA(a)→ 0 and 0→ IdA(a)→ a→ 0(a),

for all a ∈ Obj(A), has been proved in Example 2.3.23.

This shows that, in fact A is a recollement of A and 0. Similarly, we could

also take A′ = 0 and A′′ = A to obtain a similar recollement. Although trivial,
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these recollements show that every abelian category admits at least one such

decomposition.

The trivial recollements above provide no actual decomposition. The first

meaningful example arise when we consider the direct sum of two abelian

categories.

Example 4.4.3. Given two abelian categories, A and B, consider their direct

sum, that is, consider the category A⊕B whose:

• objects are pairs (a, b) of objects a ∈ Obj(A) and b ∈ Obj(B),

• morphisms are pairs (f, g) of morphisms f ∈ Mor(A) and g ∈ Mor(B),

• compositions is induced by the compositions of A and B in the following

way: if f1 ∈ HomA(a1, a2), g1 ∈ HomB(b1, b2), f2 ∈ HomA(a2, a3) and

g2 ∈ HomB(b2, b3), then

(f2, g2) ◦A⊕B (f1, g1) := (f2 ◦A f1, g2 ◦B g1) .

We can characterize A⊕B as a recollement of A and B,

A A⊕B B.

i!

i∗

i∗

j∗

j∗

j!

To justify this claim, we will construct explicit functors i!, i∗, i
∗, j∗, j

∗, j!.

First, let i∗ : A→ A⊕B be the functor defined by assigning

• the object (a, 0B) to an object a ∈ Obj(A),

• the morphism (f, 0B) to a morphism f ∈ Mor(A).

Then, let i! = i∗ : A⊕B→ A be the functor defined by assigning

• the object a to an object (a, b) ∈ Obj(A⊕B),

• the morphism f to a morphism (f, g) ∈ Mor(A⊕B).

Similarly, let j∗ : A⊕B→ B be the functor defined by assigning

• the object b to an object (a, b) ∈ Obj(A⊕B),

• the morphism g to a morphism (f, g) ∈ Mor(A⊕B).

Finally, let j∗ = j! : B→ A⊕B be the functor defined by assigning
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• the object (0A, b) to an object b ∈ Obj(B),

• the morphism (0A, g) to a morphism g ∈ Mor(B).

The verification that these functors i!, i∗, i
∗, j∗, j

∗, j! actually satisfy condi-

tions (i)-(iv) of Definition 4.4.1 is straight-forward.

The example above is important for its generality. We close this section with

an example that illustrates a natural geometric instance of this phenomenon.

Example 4.4.4. Let X be a Noetherian scheme, Z be a closed subscheme

of X, and U = X \ Z be its open complement. Denote by i : Z → X

and j : U → X the inclusion maps. Consider the categories A = Coh(X),

A′ = Coh(Z) and A′′ = Coh(U). We obtain a recollement:

A′ A A′′

i!

i∗

i∗

j∗

j∗

j!

Here i∗ is the pushforward of coherent sheaves from Z to X, i∗ is the pull-

back (restriction) to Z, and i! is given by Ext•(OZ ,−) (shifted appropriately).

Similarly, j∗ is the restriction to U , while j! is extension by zero and j∗ is

the pushforward from U to X. The short exact sequences in the recollement

axioms reflect the fact that any coherent sheaf on X sits in exact sequences

relating its restrictions to U and Z. This recollement is fundamental to the

theory of stratifications by support and provides the geometric foundation for

the examples we will encounter in subsequent sections.

Having understood how a category can be decomposed into a subcategory

and a quotient via recollement, we are ready to describe how a sequence of

such decompositions leads to the notion of stratification.

4.5. Stratifications

While recollements describe how an abelian category can be built from a

subcategory and its quotient, stratifications organize a sequence of such rec-

ollements along a poset. Thus, a stratification provides a systematic way to

decompose an abelian category into simpler layered pieces with these layers

fitting together in a coherent way. Such layered structures arise naturally in

algebraic geometry and representation theory. In this section, we introduce
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the formal definition of a stratification and illustrate this concept with a few

examples.

Definition 4.5.1 (stratification). Given an abelian category A and a poset

P , a stratification of A with respect to P consists of a family of Serre subcat-

egories, AQ ⊆ A for each subset Q ⊆ P , such that the following conditions

hold:

(i) A∅ = 0,

(ii) AP = A,

(iii) if Q ⊆ Q′ are two subsets of P , then AQ ⊆ AQ′ ,

(iv) for every subset Q ⊆ P , if we denote by q the maximal element of Q, then

there exists a recollement AQ\{q} → AQ → A{q}.

Intuitively, each stratum Aq represents one layer of the category, and the

recollement condition ensures that A can be built step by step by gluing lay-

ers. To build intuition for this definition, we begin with the most elementary

examples and gradually increase complexity. The first example shows that the

notion of stratification is non-trivial even in the simplest case.

Example 4.5.2. Let A be any abelian category and let P = {0} be the one-

element poset. Then there is a unique stratification of A with respect to P ,

given by A∅ = 0 and AP = A. This example is trivial but important, as it

shows that every abelian category admits at least one stratification.

The trivial stratification provides no decomposition whatsoever. While it

illustrates the basic formalism, stratifications become most interesting and

useful when they arise naturally. We now present an example that appears

throughout algebraic geometry.

Example 4.5.3. Let X be a Noetherian scheme and let A = Coh(X) be the

category of coherent sheaves on X. Suppose X has a finite stratification by

locally closed subsets:

X = X0 ⊔X1 ⊔ · · · ⊔Xn,

where each Xi is locally closed and the closures satisfy X0 ⊆ X1 ⊆ · · · ⊆ Xn.

Define P = {0, 1, . . . , n} with the usual ordering, and for each i ∈ P , let

A≤i =
{
F ∈ Coh(X) | Supp(F) ⊆ X0 ∪X1 ∪ · · · ∪Xi

}
.
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Each A≤i is a Serre subcategory, and these define a stratification of Coh(X).

The stratum Ai consists of sheaves supported on the closure of Xi but not on

any smaller stratum.

To close this part of the notes, we will consider stratifications arising in

representation theory, more specifically, in certain categories of modules for

Lie superalgebras. We will begin by reviewing the context in which these

stratifications arise and then proceed to construct them.

Let g be a finite-dimensional simple Lie superalgebra over C and let A be

an associative, commutative algebra over C. The tensor product g ⊗C A is a

super vector space over C, when endowed with the Z2-grading given by

(g⊗C A)0 := g0 ⊗C A and (g⊗C A)1 := g1 ⊗C A,

and admits a unique Lie super bracket that satisfies

[x⊗ a, y ⊗ b]g⊗CA
= [x, y]g ⊗ (a ·A b)

for all x, y ∈ g and a, b ∈ A. Lie superalgebras of this form are known as map

superalgebras, generalized current superalgebras, or generalized loop superalge-

bras.

Since the Lie superalgebra g is finite-dimensional and simple, we can choose

a Cartan subalgebra h. The isomorphism classes of finite-dimensional simple

g-modules are parametrized by a subset of h∗, which is also a subset of the

so-called weight lattice of g with respect to h. This weight lattice contains all

possible weights of finite-dimensional g-modules (see [Kac78, Proposition 2.5]).

For every finite-dimensional simple Lie superalgebra g, there exists a reduc-

tive Lie algebra r ⊆ g for which h0 is the (non-super) Cartan subalgebra (see

[BCM19, §2] for more details). We define the category CA as the full subcate-

gory of the category of g⊗A-modules whose objects are those modules that are

equal to the direct sum of their finite-dimensional irreducible r-submodules.

In particular, every object of CA is a weight module for h. The fact that CA is

an abelian category follows from the fact that the category of g⊗CA-modules

is abelian and the observation that the subcategory CA is closed under taking

kernels, cokernels and finite direct sums.

In the remainder of this section, we will construct a stratification of the

abelian category CA. We begin by constructing Serre subcategories A≤λ and

A<λ. For λ ∈ h∗, denote by A≤λ the full subcategory of CA consisting of

g ⊗C A-modules M such that the weight space Mµ is non-zero only if µ ≤ λ.
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Similarly, let A<λ be the full subcategory of A≤λ consisting of modulesM such

that the weight space Mµ is non-zero only if µ < λ. The fact that A≤λ and

A<λ are Serre subcategories of CA follows from the observation that they are

closed under taking kernels, cokernels, and direct sums.

Now, we will prove that the inclusion functor from every subcategory A<λ

to A≤λ is fully faithful.

Proposition 4.5.4. The inclusion functor i∗ : A<λ → A≤λ is fully faithful.

Proof. Since A<λ is a full subcategory of A≤λ, we have that

HomA<λ
(N1, N2) = HomA≤λ

(i∗(N1), i∗(N2)) for every N1, N2 ∈ A<λ. □

Now, we construct a left adjoint functor to this inclusion functor. That is,

we define a functor i∗ : A≤λ → A<λ for which there exist natural isomorphisms

HomA≤λ
(M, i∗(N))→ HomA<λ

(i∗(M), N).

To do that, we assign to each object M of A≤λ, the quotient

i∗(M) =M/M̸<λ, where M̸<λ :=
∑
µ̸<λ

U(g⊗ A)Mµ,

and assign to each morphism f ∈ HomA≤λ
(M,M ′), the unique g⊗CA-module

homomorphism i∗(f) : i∗(M)→ i∗(M ′) such that i∗(f) ◦ πM = πM ′ ◦ f , where
πM : M → i∗(M) and πM ′ : M ′ → i∗(M ′) denote the respective projections.

Verifying that i∗ satisfies the functor axioms is straightforward.

In the following proposition, we prove that this functor i∗ is indeed left

adjoint to the inclusion functor i∗.

Proposition 4.5.5. The functor i∗ : A≤λ → A<λ is left adjoint to the inclusion

functor i∗ : A<λ → A≤λ.

Proof. To prove that the functor i∗ is left adjoint to the functor i∗, we will

construct natural isomorphisms

ΦM,N : HomA≤λ
(M, i∗(N))→ HomA<λ

(i∗(M), N)

for all M ∈ A≤λ and N ∈ A<λ. To do that, begin by noticing that i∗(N)

is simply N viewed as an object of A≤λ. Then, denote by π the canonical

projection M → i∗(M). The natural isomorphism ΦM,N on a morphism f

in HomA≤λ
(M, i∗(N)) is defined to be the unique homomorphism of g ⊗C A-

modules f : i∗(M)→ N such that f = f ◦ π. □
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We now construct a right adjoint functor i! : A≤λ → A<λ to the inclusion

functor i∗ : A<λ → A≤λ. On objects, we define i!(M) to be the sum of all

g⊗CA-submodules of M that are in A<λ. This sum is a g⊗CA-submodule of

M contained in A<λ (by construction), as well as its unique largest submodule

in A<λ. To define i! on morphisms, let f be a morphism in HomA≤λ
(M,M ′).

We define i!(f) by restricting f , that is, by setting i!(f)(m) = f(m) for all

m ∈ i!(M). To verify that this is a well-defined functor is straightforward.

In the next result, we prove that this functor i! is indeed right adjoint to

the inclusion functor.

Proposition 4.5.6. The functor i! : A≤λ → A<λ is right adjoint to the

inclusion functor i∗ : A<λ → A≤λ.

Proof. To prove that the functor i! is right adjoint to the functor i∗, we will

construct natural isomorphisms

ΦN,M : HomA≤λ
(i∗(N),M)→ HomA<λ

(N, i!(M))

for all N ∈ A<λ and M ∈ A≤λ. Recall that i∗(N) is simply N viewed as

an object of A≤λ, and let j : i!(M) ↪→ M denote the inclusion of the largest

submodule of M contained in A<λ. Thus, the natural isomorphism ΦN,M on a

morphism f ∈ HomA≤λ
(i∗(N),M) is defined to be the unique homomorphism

f : N → i!(M) such that f = j ◦ f . □

The constructions above yield the left half of the stratification diagram

A<λ A≤λ Aλ,

i!

i∗

i∗

j∗

j∗

j!

We now proceed to construct its right half. Begin by defining Aλ to be the

full subcategory of h⊗C A-modules consisting of modules N such that

(h⊗ 1)n = λ(h)n for all h ∈ h and n ∈ N.

In other words, Aλ is the category of h⊗CA-modules on which h⊗1 acts via the
weight λ. The fact that the category Aλ is abelian follows from the fact that

the category of h⊗CA-modules is abelian and the observation that subcategory

Aλ is closed under taking kernels, cokernels, and finite direct sums.

We now define a functor j∗ : A≤λ → Aλ by assigning: to a module V in

A≤λ, its λ-weight space, j
∗(V ) := Vλ, and to a morphism f :M → N in A≤λ,
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its restriction, j∗(f) := f |Mλ
: Mλ → Nλ. To verify that j∗ indeed defines a

functor is also straightforward.

One can directly prove that j∗ is an exact functor. We will obtain this result

as a consequence of the construction of left and right adjoint functors for it.

To construct these adjoint functors, let g = n−⊕h⊕n+ be a triangular decom-

position of the Lie superalgebra g. If we let b+ = h⊕ n+ be the corresponding

Borel subalgebra of g, then b+ ⊗C A is a parabolic subalgebra of g⊗C A.

We will construct a left adjoint functor j! to j
∗ using induction from this

parabolic subalgebra to the full superalgebra g ⊗C A. In this context, the

functor j! : Aλ → A≤λ is commonly known as the Weyl functor.

Define the functor j! on objects in the following way. To an object N in Aλ,

we assign j!(N) := U(g⊗A)⊗U(b+⊗A)N , where the b+⊗A-module structure on

N is given by extending its h⊗A-action trivially on n+⊗A, the left U(g⊗A)-
module structure on U(g ⊗ A) is given by left multiplication, and the right

U(b+⊗A)-module structure on U(g⊗A) is given by right multiplication. To a

homomorphism of h⊗A-modules f : N → N ′, we assign the tensor morphism

j!(f) := idU(g⊗A)⊗f . The fact that j! is indeed a functor follows from the

functorial properties of the tensor product over U(b+ ⊗ A).

In the next result, we prove that j! is in fact a left adjoint functor to the

functor j∗.

Proposition 4.5.7. The functor j! : Aλ → A≤λ is left adjoint to the functor

j∗ : A≤λ → Aλ.

Proof. We will construct natural isomorphisms

ΦN,M : HomA≤λ
(j!(N),M)→ HomAλ

(N, j∗(M))

for all N ∈ Aλ and M ∈ A≤λ. For a morphism f ∈ HomA≤λ
(j!(N),M), we

define the morphism ΦN,M(f) ∈ HomAλ
(N, j∗(M)) by setting

ΦN,M(f)(n) = f(1⊗ n) for all n ∈ N.

The fact that ΦN,M is a natural isomorphism follows from the tensor-Hom

adjunction

HomU(g⊗CA)

(
U(g⊗C A)⊗U(b+⊗CA) N, M

) ∼= HomU(b+⊗CA)(N,M). □

Having established the adjunction between j! and j∗, we now proceed to

show that the functor j! is fully faithful. To do that, we begin by recalling that
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a left adjoint functor is fully faithful if and only if the unit of the adjunction is

a natural isomorphism. We will use this criterion to prove that the left adjoint

functor j! to j
∗ is fully faithful.

Proposition 4.5.8. The functor j! : Aλ → A≤λ is fully faithful.

Proof. We will show that the unit of the adjunction between j! and j∗ is a

natural isomorphism. Since η : idAλ
→ j∗ ◦ j! is a natural transformation,

this is equivalent to showing that ηN : N → j∗(j!(N)) is a bijection for every

object N in Aλ. From the proof of Proposition 4.5.7, we recall that ηN is given

by ηN(n) = 1 ⊗ n, where 1 ⊗ n is viewed as an element of j!(N)λ. The fact

that ηN is a bijection follows from the Poincaré-Birkhoff-Witt Theorem (see,

for instance, [Hum72, Theorem 17.3]). □

In the stratification of the category CA, the right adjoint to the functor j∗

will be given by a restricted form of coinduction. To explicitly construct this

functor, let b− = h ⊕ n− denote the opposite Borel subalgebra. Then, assign

to an object N in Aλ, the restricted coinduction

j∗(N) :=
⊕
µ∈h∗

HomU(b−⊗CA) (U(g⊗C A), N)µ ,

where the left U(b−⊗A)-module structure on N is given by trivially extending

its U(h⊗A)-module structure, the left U(b−⊗A)-module structure on U(g⊗A)
is induced by left multiplication, and the right U(g⊗A)-module structure on

U(g⊗A) is induced by right multiplication. To a morphism f ∈ HomAλ
(N,N ′),

we assign the morphism j∗(f) : j∗(N) → j∗(N
′) defined by post-composition,

j∗(f) = − ◦ f . It is straightforward to verify that j∗ preserves identities and

composition, thus defining a functor. We now establish the right adjointness

of j∗ with respect to the functor j∗.

Proposition 4.5.9. The functor j∗ : Aλ → A≤λ is right adjoint to the functor

j∗ : A≤λ → Aλ.

Proof. We will construct natural isomorphisms

ΦM,N : HomA≤λ
(M, j∗(N))→ HomAλ

(j∗(M), N)

for every M ∈ A≤λ and N ∈ Aλ. This natural isomorphism is defined on a

morphism f ∈ HomA≤λ
(M, j∗(N)) to be the morphism ΦM,N(f) : Mλ → N

given by

ΦM,N(f)(m) = f(m)(1) for all m ∈Mλ,
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where 1 ∈ U(g⊗C A) denotes the unit element. The fact that ΦM,N defines a

natural isomorphism follows from the tensor-Hom adjunction

HomU(g⊗CA)

(
M, HomU(b−⊗CA)(U(g⊗C A), N)

) ∼= HomU(b−⊗CA)(M,N). □

Having established the adjunction between j∗ and j∗, we now proceed to

show that the restricted costandard functor j∗ is fully faithful. To do that, we

begin by recalling that a right adjoint functor is fully faithful if and only if the

counit of its corresponding adjunction is a natural isomorphism. We will use

this criterion to prove that j∗ is fully faithful.

Proposition 4.5.10. The functor j∗ : Aλ → A≤λ is fully faithful.

Proof. We will prove that the counit of the adjunction between j∗ and j∗ is

a natural isomorphism. Since this counit ε : j∗ ◦ j∗ → idAλ
is a natural

transformation (by construction), this is equivalent to proving that εN is a

bijection for every object N in Aλ. From the proof of Proposition 4.5.9, we

recall that εN is explicitly given by εN(f) = f(1) for f ∈ j∗(j∗(N)) = j∗(N)λ.

The fact that εN is a bijection follows from the weight module structure of

j∗(N):

j∗(N)λ = HomU(b−⊗CA)(U(g⊗C A), N)λ ∼= HomC(C, N) ∼= N. □

We have thus constructed both halves of the stratification diagram

A<λ A≤λ Aλ,

i!

i∗

i∗

j∗

j∗

j!

To conclude this part we will verify that the functors satisfy the conditions

(iii) and (iv) of Definition 4.4.1.

The vanishing condition in Definition 4.4.1(iii) follows immediately from the

definitions of the functors i∗ and j
∗. In fact, if M is an object of CA for which

the weight space Mµ is non-zero only if µ < λ, then j∗(i∗(M)) =Mλ = {0}.

To verify the existence of the first exact sequence in Definition 4.4.1(iv),

recall that, for every object M of A≤λ, the object i∗(i
∗(M)) is the quotient

M/M̸<λ viewed as an object of A≤λ. Since M is assumed to be in A≤λ, its

submodule M ̸<λ is the one generated by Mλ. Hence, the projection M →
M/U(g⊗CA)Mλ is an epimorphism M → i∗(i

∗(M)); whose kernel is given by

U(g⊗C A)Mλ. Then, notice that j!(j
∗(M)) = j!(Mλ) = U(g⊗C A)⊗U(b+⊗CA)
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Mλ. Hence, the left U(g ⊗C A)-module structure on M induces a morphism

j!(j
∗(M)) → M , explicitly given by u ⊗ m 7→ u · m, whose image is exactly

U(g⊗C A)Mλ. This means that there exists a natural exact sequence

j!(j
∗(M))→M → i∗(i

∗(M))→ 0.

To verify the existence of the second exact sequence in Definition 4.4.1(iv),

begin by recalling that, for every object M of A≤λ, the object i∗(i
!(M)) is its

largest submodule whose weights are < λ. Hence, the inclusion i∗(i
!(M))→M

is a monomorphism, whose image is i∗(i
!(M)) itself. Then, recall that

j∗(j
∗(M)) = j∗(Mλ) =

⊕
µ∈h∗

HomU(b+⊗CA)(U(g⊗C A),Mλ)µ.

Thus, we can define a morphism ϕ :M → j∗(j
∗(M)) by setting ϕ(m)(u) = um.

This is a homomorphism of g ⊗C A-modules whose kernel is i∗(i
∗(M)). To

justify this claim, notice that ϕ is the image of idMλ
under the adjunction

HomAλ
(j∗(M), j∗(M)) ∼= HomA≤λ

(M, j∗(j
∗(M))). This implies that ϕ is a well-

defined homomorphism of g⊗C A-modules. The fact that ker(ϕ) = i∗(i
∗(M))

follows from the fact that ϕ maps every weight vector in M whose weight is

not < λ to 0.

This completes the proof that the category CA admits a stratification by the

categories Aλ:

A<λ A≤λ Aλ,

i!

i∗

i∗

j∗

j∗

j!



Part V

Appendices

Appendix A. Groups

A.1. Axioms and basic examples of groups. We begin this section with

the abstract definition of a group. Groups are one of the most fundamen-

tal structures in mathematics, providing a framework for studying symmetry,

transformations, and algebraic equations. The definition of a group captures

the essential properties of many familiar mathematical objects, such as num-

bers, vectors, and permutations.

Definition A.1. A group is a non-empty set G equipped with a function

m : G×G→ G (i.e., a binary operation) satisfying the following conditions:

(i) m is associative, i.e., m(m(a, b), c) = m(a,m(b, c)) for all a, b, c ∈ G.

(ii) There exists e ∈ G such that m(e, g) = g = m(g, e) for all g ∈ G.

(iii) For each g ∈ G, there exists g̃ ∈ G such that m(g, g̃) = e = m(g̃, g).

The element e is called the identity element of G. The element g̃ is called the

inverse of g. A group (G,m) is said to be commutative or abelian when m is

a commutative binary operation, i.e., when m(g, h) = m(h, g) for all g, h ∈ G.

Now we will present some familiar examples of groups. We begin with the

integers equipped with their usual addition. This example is foundational, as

it illustrates how the abstract definition of a group applies to a well-known

mathematical structure.

Example A.2. Consider the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }
equipped with the binary operation m : Z× Z → Z given by m(a, b) = a + b.

The pair (Z,m) is an abelian group. In fact:
132
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(i) For all a, b, c ∈ Z, we have

m(m(a, b), c) = m(a+ b, c)

= (a+ b) + c

= a+ (b+ c)

= m(a, b+ c)

= m(a,m(b, c)).

(ii) The identity element of (Z,m) is 0. Indeed, for all a ∈ Z, we have:

m(a, 0) = a+ 0 = a = 0 + a = m(0, a).

(iii) The inverse of an element a ∈ Z is −a ∈ Z. Indeed, for all a ∈ Z, we
have:

m(a,−a) = a+ (−a) = 0 = (−a) + a = m(−a, a).

(iv) Moreover, for all a, b ∈ Z, we have m(a, b) = a+ b = b+ a = m(b, a).

The integers under addition are just one example of an abelian group. An-

other important class of abelian groups arises from vector spaces, which are

central to linear algebra.

Example A.3. Let k be a field (for example, k = R) and (V,+, ·) be a k-
vector space. By the definition of a vector space from Linear Algebra, the set

V equipped with the binary operation + : V × V → V is an abelian group.

In particular, the sets of rational numbers Q, real numbers R, and complex

numbers C are abelian groups when equipped with their usual addition.

While addition is a natural binary operation that forms a group, not all

familiar operations satisfy the group axioms. In the next example, we will see

why the set of real numbers under multiplication does not form a group.

Example A.4. Consider the set of real numbers, R, and the binary operation

m : R × R → R given by m(a, b) = ab. Observe that (R,m) is not a group.

Although m is associative and 1 is its identity element, there is no inverse for

0. Indeed, m(a, 0) = 0 for all a ∈ R, so there is no 0̃ ∈ R such thatm(0̃, 0) = 1.

Although the set of real numbers under multiplication is not a group, we

can modify this example slightly to obtain a group. By excluding the element

that causes issues (in this case, 0), we can construct a group structure. This

idea is explored in the next example.



134 TIAGO MACEDO

Example A.5. Let (k,+, ·) be a field (for example, k = R) and consider the

set k \ {0}. From the Definition B.1, it follows that k \ {0} equipped with the

binary operation m : k \ {0} × k \ {0} → k \ {0} given by m(a, b) = a · b is an
abelian group.

Having explored examples of groups arising from numbers and vector spaces,

we now turn to the smallest possible group. This example is important because

it demonstrates that even the simplest non-empty set can be equipped with a

group structure.

Example A.6. The set with a single element {e} equipped with the unique

binary operation m : {e} × {e} → {e} (given by m(e, e) = e) is a (abelian)

group. To verify that ({e},m) is indeed a group, notice that

(i) m(m(e, e), e) = m(e, e) = m(e,m(e, e));

(ii) e is the identity element, since m(e, e) = e;

(iii) e is the inverse of e, since m(e, e) = e;

(iv) {e} is abelian, since m(e, e) = e = m(e, e).

This group is called the trivial group.

While the trivial group is the smallest possible group, groups can also be

constructed from more complex structures, such as sets of functions. In the

next example, we will see how the set of bijections on a set forms a group

under composition.

Example A.7. Let X be a non-empty set and G be the set of bijections

f : X → X. When this set G is equipped with the composition of functions,

it becomes a group. To verify this claim, observe that:

(i) Composition of functions is associative, since

(f ◦ (g ◦ h))(x) = f(g ◦ h)(x))
= f(g(h(x))

= (f ◦ g)(h(x))
= (f ◦ g) ◦ h)(x), for all x ∈ X.

(ii) The identity function idX : X → X, explicitly given by idX(x) = x for all

x ∈ X is the identity element, since

(f ◦ idX)(x) = f(idX(x)) = f(x) = idX(f(x)) = (idX ◦f)(x),
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for all x ∈ X.

(iii) By definition, every bijection f : X → X has an inverse function f−1,

such that f ◦ f−1 = idX and f−1 ◦ f = idX .

This group is called the symmetric group on X.

In the following sections, we will denote m(g, h) in a simpler way, by either

g · h, or g + h (in the abelian cases), or gh.

A.2. Group homomorphisms. In this section, we will define group homo-

morphisms. Intuitively, a homomorphism between two groups is a function

that preserves the important structure that these sets have, namely their op-

eration. Homomorphisms are essential in group theory because they allow us

to compare groups and study their properties in a structured way.

Definition A.8. Let (G,mG) and (H,mH) be two groups. A group homo-

morphism from G to H is a function f : G→ H satisfying:

(i) f(mG(g1, g2)) = mH(f(g1), f(g2)) for all g1, g2 ∈ G,

(ii) f(eG) = eH .

An isomorphism of groups is a group homomorphism that is bijective. We

say that the group G is isomorphic to the group H when there exists an

isomorphism of groups f : G→ H.

To better understand the abstract definition of group homomorphisms, we

will consider some concrete examples. We will start with a familiar example

from linear algebra and then explore more specialized cases.

Example A.9. Let k be a field (for example, k = R), and let (V,+V , ·V ) and
(W,+W , ·W ) be two k-vector spaces. By definition, every linear transformation

T : V → W is a homomorphism from the group (V,+V ) to the group (W,+W ),

since

T (v1 +V v2) = T (v1) +W T (v2) for all v1, v2 ∈ V.
Moreover, every linear isomorphism T : V →W is a group isomorphism, since

it is a bijection.

A particular case of the previous example arises when we consider specific

groups and functions. In the next example, we will see how the exponential

function serves as a group isomorphism between the additive group of real

numbers and the multiplicative group of positive real numbers.
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Example A.10. Consider the additive group R, the multiplicative group

R>0 = {α ∈ R | α > 0}, and the function exp: R→ R>0 given by exp(a) = ea.

To verify that exp is a group isomorphism, notice that:

(i) exp(a+ b) = ea+b = eaeb = exp(a) · exp(b) for all a, b ∈ R.

(ii) exp(0) = e0 = 1.

This shows that exp is a group homomorphism. Moreover, ln : R>0 → R is

the inverse of exp. Therefore, exp is a bijection, and consequently, a group

isomorphism.

While the previous examples involve specific functions, there is always a

trivial homomorphism between any two groups. This example illustrates the

simplest possible homomorphism, which maps every element of the domain

group to the identity element of the codomain group.

Example A.11. Let G and H be two groups. Observe that the constant func-

tion f : G → H given by f(g) = eH for all g ∈ G is a group homomorphism.

Indeed:

(i) f(g1g2) = eH = eHeH = f(g1)f(g2) for all g1, g2 ∈ G.

(ii) f(eG) = eH .

This homomorphism is called the trivial homomorphism. Observe that this

homomorphism is an isomorphism if and only if G = H = {e}.

To finish this section, we will explore the properties of group homomor-

phisms under composition and the identity function. These properties allow

us to define the set of automorphisms of a group, which itself forms a group.

Example A.12. Let G, H, K be groups, and f : G → H, g : H → K be

group homomorphisms. To verify that the composition g ◦ f : G → K is also

a group homomorphism notice that:

(i) For all g1, g2 ∈ G,

(g ◦ f)(g1g2) = g(f(g1g2))

= g(f(g1)f(g2))

= g(f(g1))g(f(g2))

= (g ◦ f)(g1)(g ◦ f)(g2).

(ii) (g ◦ f)(eG) = g(f(eG)) = g(eH) = eK .
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This explains why the composition of group homomorphisms is also a group

homomorphism.

Next, we will verify that the identity function idG : G → G is a group

homomorphism. Indeed:

(i) For all g1, g2 ∈ G, we have idG(g1g2) = g1g2 = idG(g1) idG(g2).

(ii) idG(eG) = eG.

Finally, let Aut(G) denote the set of all group isomorphisms from G to itself.

To verify that Aut(G) is a group under composition, notice that:

(i) the composition of two automorphisms is an automorphism;

(ii) the identity function idG is an automorphism;

(iii) every automorphism f : G→ G has an inverse f−1 : G→ G, which is also

an automorphism;

(iv) the composition of functions is associative.

Thus, Aut(G) is a group, called the automorphism group of G.

A.3. Subgroups. Intuitively, subgroups are subsets of a group that inherit

the group structure of the group in which they are contained. We begin this

section with the formal definition of subgroups.

Definition A.13. Let (G,mG) be a group. A subgroup of G is a non-empty

subset H ⊆ G satisfying:

(i) If h1, h2 ∈ H, then mG(h1, h2) ∈ H.

(ii) If h ∈ H, then h−1 ∈ H.

Now, we will present some examples of subgroups. The first example shows

that every group has at least one subgroup.

Example A.14. Given any group G, the subsets {eG} and G are subgroups

of G. Indeed:

• for {eG}, observe that

eGeG = eG ∈ {eG} and e−1
G = eG ∈ {eG}.

• for G, observe that, if g, h ∈ G, then

gh ∈ G and g−1 ∈ G.
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Thus, {eG} and G are subgroups of G.

Having seen the subgroups that every group contains, we now consider a

more interesting example. The integers form a subgroup of the rational num-

bers under addition, as shown in the next example.

Example A.15. Consider the additive group (Q,+). Let us show that Z is a

subgroup of Q. Indeed, observe that if a, b ∈ Z, then a+ b ∈ Z and −a ∈ Z.

Subgroups also arise naturally in the context of vector spaces: every vector

subspace is a subgroup of the additive group of the vector space. However, not

every subgroup of a vector space is a vector subspace, as shown in the next

example.

Example A.16. Given a vector space (V,+, ·), by definition, every vector

subspace is a subgroup of V . (In particular, the subspaces {0} and V are

subgroups of V – compare with Example A.14.) However, not every subgroup

of (V,+) is necessarily a vector subspace of V . For example, we can verify that

Q is a subgroup of the additive group (R,+). Indeed, observe that if a, b ∈ Q,

then a + b ∈ Q and −a ∈ Q. However, Q is not a vector subspace of R; for
instance, π ∈ R, 1 ∈ Q, but π · 1 = π /∈ Q.

We close this section showing that not all subsets of a group are subgroups.

In the next example, we will see that the multiplicative group of non-zero real

numbers is not a subgroup of the additive group of real numbers.

Example A.17. The multiplicative group (R \ {0}, ·) is not a subgroup of

the additive group (R,+). Indeed, by Definition A.13, a subgroup is a subset

closed under the same operation as the group. In this case, R \ {0} is not

closed under addition, which is the operation of the group R. Indeed, for

every a ∈ R \ {0}, we have a− a = 0 ̸∈ R \ {0}.

A.4. Kernels and images of homomorphisms. In this section, we will

define kernels and images of group homomorphisms. In addition to providing

tools for analysing groups and homomorphisms, these objects also provide

tools for constructing subgroups.

Definition A.18. Let f : G → H be a group homomorphism. Define the

kernel of f as the set

ker(f) = {g ∈ G | f(g) = eH},
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and define the image of f as the image of the function f , that is, the set

im(f) = {h ∈ H | there exists g ∈ G such that f(g) = h}.

We turn now to some concrete examples. We will start with a familiar

example from linear algebra and then explore more specialized cases.

Example A.19. Consider two R-vector spaces V and W , viewed as groups.

Recall from Example A.9 that every linear transformation T : V → W is a

group homomorphism. Moreover, the kernel of T as a linear transformation is

the same as the kernel of T as a group homomorphism, and the image of T as a

linear transformation is the same as the image of T as a group homomorphism.

While the previous example involves vector spaces, kernels and images also

play an important role in more general group homomorphisms. In the next

example, we will see how the trivial homomorphism provides a simple but

instructive case.

Example A.20. Consider two groups G,H, and the trivial homomorphism

f : G → H, given explicitly by f(g) = eH for all g ∈ G (see Example A.11).

By construction, f(g) = eH for all g ∈ G, so ker(f) = G. Additionally, the

only element h ∈ H such that there exists g ∈ G satisfying f(g) = h is h = eH .

This shows that im(f) = {eH} (the trivial subgroup).

Another important example arises when we consider the canonical projection

from the integers to the integers modulo n. This example illustrates how

kernels and images can be used to analyse quotient groups.

Example A.21. Let n > 1 and recall that the set Zn := {0, 1, . . . , n− 1} is a
group under the addition modulo n. Then, consider the canonical projection

f : Z→ Zn, given explicitly by f1(z) = z.

The kernel of f is {kn | k ∈ Z}. Indeed, on one hand, if z ∈ {kn | k ∈ Z},
then f(z) = f(kn) = kn = 0 ∈ Zn. On the other hand, if z = 0 ∈ Zn, this

means that the remainder of the division of z by n is 0; that is, n divides z.

Therefore, ker(f) = {kn | k ∈ Z}.

Now, we will verify that the image of f is Zn. Indeed, for each h ∈ Zn, we

can choose an element g ∈ {0, 1, . . . , n − 1} ⊆ Z to obtain f(g) = h. This

shows that f is surjective
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The next result shows that kernels and images of homomorphisms are al-

ways subgroups of the domain and codomain respectively of the corresponding

homomorphism.

Proposition A.22. If f : G→ H is a group homomorphism, then ker(f) is a

subgroup of G and im(f) is a subgroup of H.

Proof. See [DF04, §3.1, Proposition 1]. □

A.5. Quotient groups and normal subgroups. The main goal of this sec-

tion is to define quotient groups, that is, quotients of a group by one of its

subgroups. For this quotient to also have a group structure, the subgroup by

which we quotient must satisfy a certain condition. Subgroups that satisfy

this condition are called normal. We begin this section by constructing the

quotient as a set.

Consider a group G and a subgroup N ⊆ G. Define a relation on G as

follows:

g ∼ h if and only if h−1g ∈ N.

We will verify that ∼ is an equivalence relation:

• For every g ∈ G, we have g ∼ g. Indeed, since N is a subgroup of G, it

follows that g−1g = eG ∈ N .

• If g ∼ h, then h−1g ∈ N by definition. Since N is a subgroup of G, it

follows that g−1h = (h−1g)−1 ∈ N . Hence, h ∼ g.

• If a ∼ b and b ∼ c, then b−1a, c−1b ∈ N . Since K is a subgroup of G, it

follows that c−1a = (c−1b)(b−1a) ∈ N . Hence, a ∼ c.

Denote by G/N the set of equivalence classes of the relation ∼, denote by

ḡ ∈ G/N the equivalence class represented by the element g ∈ G, and by gN

(resp. Ng) the subset {gn ∈ G | n ∈ N} (resp. {ng ∈ G | n ∈ N}). A set

of the form gN (resp. Ng) is called a left coset of g (resp. right coset of g).

Observe that h̄ = ḡ if and only if h ∈ gN . That is, the elements of the left

coset of g are the representatives (in G) of the equivalence class ḡ (which is an

element of G/N).

Definition A.23. Given a group G, a subgroup N ⊆ G is said to be normal

if gN = Ng for every g ∈ G.
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The next result shows that a necessary and sufficient condition for the quo-

tient G/N to admit a group structure when equipped with the operation in-

duced from the group G is that the subgroup N is normal. This fact highlights

the relevance of normal subgroups and justifies their definition.

Proposition A.24. Let G be a group and N ⊆ G a subgroup.

(a) Equipped with the operation m : (G/N) × (G/N) → (G/N) given by

m(ḡ, h̄) = gh, the set G/N is a group if and only if N is a normal subgroup

of G.

(b) If N is a normal subgroup of G, then the function f : G→ G/N given by

f(g) = ḡ is a group homomorphism and ker(f) = N .

Proof. See [DF04, §3.1, Proposition 5]. □

By Proposition A.24(a), N ⊆ G is a normal subgroup if and only if G/N is

a group. In the following examples, we will construct normal subgroups and

their respective quotient subgroups.

Example A.25. For every group G, the trivial subgroup {eG} ⊆ G is a

normal subgroup. Indeed, g{eG} = {g} = {eG}g for every g ∈ G. Moreover,

the quotient group G/{eG} is isomorphic to G. Indeed, consider the function

f : G → G/{eG} given by f(g) = ḡ. By Proposition A.24(b), f is a group

homomorphism whose kernel is {eG}. Thus, f is injective. Additionally, since

every element of G/{eG} is, by construction, of the form ḡ for some g ∈ G, it
follows that f is surjective. This shows that f is an isomorphism between G

and G/{eG}.

Having seen the simplest example of a normal subgroup and its quotient,

we now consider the opposite extreme: the case where the subgroup is the

entire group. This example illustrates how the quotient group can sometimes

be trivial.

Example A.26. For every group G, the subgroup G ⊆ G is normal. Indeed,

gG = {gh | h ∈ G} ⊆ G and, for a fixed g ∈ G, for any k ∈ G, we have

h = g−1k ∈ G and gh = g(g−1k) = k. This shows that gG = G. The proof

that Gg = G is completely analogous. With this, we conclude that G is a

normal subgroup of G.

Moreover, the quotient group G/G is the trivial group. To verify this claim,

we will show that G/G contains only one element; that is, we will show that
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g = eG ∈ G/G for every g ∈ G. This is true because eG
−1g = g ∈ G for every

g ∈ G. Therefore, G/G contains only one element, and hence, it is the trivial

group.

Next, we turn to a more interesting example involving the permutation

group S3. This example demonstrates how normal subgroups can be identified

using homomorphisms and how they relate to quotient groups.

Example A.27. Let X be a non-empty set and G be the symmetric group

defined in Example A.7. When X has 3 or more elements, we can construct a

subgroup of G that is not normal.

If X has three or more distinct elements, we can fix three of them, x1, x2, x3.

Using the first two elements, we can define a function f ∈ G in the following

way:

f(x1) = x2, f(x2) = x1 and f(x) = x for all x ∈ X \ {x1, x2}.

The subset H := {idX , f} is a subgroup of G, since

idX ◦ idX = idx, idX ◦f = f ◦ idX = f, f ◦ f = idX ,

id−1
X = idX and f−1 = f.

However, the subgroup H is not normal in G. To justify this claim, we will

construct an element g ∈ G such that gH ̸= Hg. Namely, let g : X → X be

the function defined by

g(x2) = x3, g(x3) = x2 and g(x) = x for all x ∈ X \ {x2, x3}.

Notice that the subset gH consists of the functions g and g ◦ f , while the

subset Hg consists of the functions g and f ◦ g. To justify that gH ̸= Hg, we

have to show that g ◦ f ̸= f ◦ g. In fact,

(g ◦ f)(x1) = g(x2) = x3 and (f ◦ g)(x1) = f(x1) = x2.

This shows that g ◦ f ̸= f ◦ g, and as a consequence, that gH ̸= Hg and that

H is not a normal subgroup of G

In abelian groups, the situation is simpler: every subgroup is normal. This

is because the group operation is commutative, which ensures that left and

right cosets coincide.

Example A.28. Let G be an abelian group and H ⊆ G a subgroup. To verify

that H is normal, notice that, for every g ∈ G and h ∈ H, we have gh = hg
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because G is abelian. Thus, gH = {gh | h ∈ H} = {hg | h ∈ H} = Hg. This

shows that H is a normal subgroup of G.

Finally, we revisit the connection between kernels and normal subgroups.

The kernel of any group homomorphism is always a normal subgroup, as shown

in the following example.

Example A.29. Let f : G → H be a group homomorphism. Recall from

Proposition A.22 that ker(f) is a subgroup of G. To show that ker(f) is

normal, notice that

f(gkg−1) = f(g)f(k)f(g−1)

= f(g)eHf(g
−1)

= f(g)f(g−1)

= f(gg−1)

= f(eG)

= eH .

for all g ∈ G and k ∈ ker(f). This means that gkg−1 ∈ ker(f), or equivalently,

that g ker(f) ⊆ ker(f)g. One can verify that the other inclusion is also true

in a completely analogous way. This implies that ker(f) is a normal subgroup

of G.

A.6. Isomorphism Theorems. The theme of this section are the Isomor-

phism Theorems. These results are very important for group theory and have

numerous applications.

The First Isomorphism Theorem is analogous to the Rank-Nullity Theorem

in Linear Algebra. It states that, for every group homomorphism, there exists

an isomorphism between its image and the quotient of its domain by its kernel.

Theorem A.30. For every group homomorphism f : G → H, there exists a

group isomorphism G/ ker(f) ∼= im(f).

Proof. See [DF04, §3.3, Theorem 16]. □

The Second Isomorphism Theorem is a result that allows for cancellations

in group quotients.
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Theorem A.31. Let G be a group and H,K ⊆ G subgroups. If H ⊆ NG(K),

then: HK is a subgroup of G, K is normal in HK, (H ∩K) is normal in H,

and there exists a group isomorphism HK/K ∼= H/(H ∩K).

Proof. See [DF04, §3.3, Theorem 18]. □

The Third Isomorphism Theorem, like the second, allows for cancellations

in quotients. In this case, the cancellation is done with respect to the normal

subgroup by which we quotient (the “denominator”). This theorem has a

very important consequence: it establishes relationships between the normal

subgroups of a group and those of its quotients.

Theorem A.32. Let G be a group. If H ⊆ K are normal subgroups of G,

then K/H is a normal subgroup of G/H and there exists a group isomorphism

G/H

K/H
∼= G/K.

Proof. See [DF04, §3.3, Theorem 19]. □

Appendix B. Rings

A ring is a set equipped with two binary operations, typically called addi-

tion and multiplication, that satisfy certain axioms. They generalize integers,

polynomials, and other familiar mathematical objects. In this section, we

will define rings, explore their properties, and provide concrete examples to

illustrate these concepts.

Definition B.1. A ring R is a set equipped with two binary operations

s : R×R→ R and m : R×R→ R,

satisfying the following conditions:

(i) (R, s) is an abelian group,

(ii) m(a,m(b, c)) = m(m(a, b), c) for all a, b, c ∈ R,

(iii) m(s(a, b), c) = s(m(a, c),m(b, c)) for all a, b, c ∈ R,

(iv) m(a, s(b, c)) = s(m(a, b),m(a, c)) for all a, b, c ∈ R.

The identity element of the group (R, s) will be denoted by 0R. A ring

(R, s,m) is said to be commutative if

m(a, b) = m(b, a) for all a, b ∈ R.
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A ring (R, s,m) is said to have an identity if there exists 1R ∈ R such that

m(1R, a) = a = m(a, 1R) for all a ∈ R.

A ring (R, s,m) is called a division ring if it has an identity and (R \{0R},m)

is a group (i.e., every non-zero element of R has a multiplicative inverse). A

ring (R, s,m) is called a field if it is a commutative division ring (in particular,

(R, s) and (R \ {0R},m) are abelian groups).

To better understand the abstract definition of rings, we will consider some

concrete examples. We will start with the simplest possible ring and then

move to more familiar examples like the ring of integers and polynomial rings.

Example B.2. Consider a set with a single element, {0}, and define the

binary operations:

s : {0} × {0} → {0} by s(0, 0) = 0,

m : {0} × {0} → {0} by m(0, 0) = 0.

We will verify that ({0}, s,m) is a ring.

(i) ({0}, s) is the trivial group,

(ii) m(0,m(0, 0)) = m(0, 0) = 0 and m(m(0, 0), 0)) = m(0, 0) = 0,

(iii) m(s(0, 0), 0) = m(0, 0) = 0 and s(m(0, 0),m(0, 0)) = s(0, 0) = 0,

(iv) m(0, s(0, 0)) = m(0, 0) = 0 and s(m(0, 0),m(0, 0)) = m(0, 0) = 0.

Observe that 0{0} = 0. Additionally, {0} is a commutative ring with identity

1{0} = 0. Indeed, m(0, 0) = 0 = m(0, 0). However, {0} is not a division ring

(and consequently not a field), since {0} \ {0{0}} = ∅ is not a group.

This ring is called the trivial ring.

Having seen the simplest example of a ring, we now consider a more familiar

example: the ring of integers.

Example B.3. Consider the set Z (of integers) equipped with the binary

operations

s : Z× Z→ Z given by s(a, b) = a+ b,

m : Z× Z→ Z given by m(a, b) = ab.

We will verify that (Z, s,m) is a ring.

(i) We have seen in Example A.2 that (Z, s) is a group.
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(ii) for all a, b, c ∈ Z,

m(a,m(b, c)) = m(a, bc) = a(bc) = (ab)c = m(ab, c) = m(m(a, b), c)).

(iii) for all a, b, c ∈ Z,

m(s(a, b), c) = m(a+b, c) = (a+b)c = ac+bc = s(ac, bc) = s(m(a, c),m(b, c)).

(iv) for all a, b, c ∈ Z,

m(a, s(b, c)) = m(a, b+c) = a(b+c) = ab+ac = s(ab, ac) = s(m(a, b),m(a, c)).

Observe that 0Z = 0. Additionally, Z is a commutative ring with identity

1Z = 1. Indeed, m(a, b) = ab = ba = m(b, a) and m(1, a) = a = m(a, 1) for

all a, b ∈ Z. However, Z is not a division ring (and consequently not a field).

Indeed, m(2, a) = 1 if and only if a = 1
2
. Since 1

2
̸∈ Z, the element 2 ∈ Z \ {0}

does not have a multiplicative inverse.

To close this appendix, we will show that the set of integers modulo n, is

also a ring.

Example B.4. The set of integers modulo n, denoted Zn, is also a ring. The

operations of addition and multiplication are defined as follows:

s : Zn × Zn → Zn given by s(a, b) = a+ b,

m : Zn × Zn → Zn given by m(a, b) = ab.

We will verify that (Zn, s,m) is a ring.

(i) Recall that (Zn, s) is a group.

(ii) for all a, b, c ∈ Z, we have

m(a,m(b, c)) = m(a, bc) = a(bc) = abc = (ab)c = m(ab, c) = m(m(a, b), c)).

(iii) for all a, b, c ∈ Z, we have

m(s(a, b), c) = m(a+ b, c)

= (a+ b)c

= ac+ bc

= s(ac, bc)

= s(m(a, c),m(b, c)).
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(iv) for all a, b, c ∈ Z, we have

m(a, s(b, c)) = m(a, b+ c)

= a(b+ c)

= ab+ ac

= s(ab, ac)

= s(m(a, b),m(a, c)).

Observe that 0Z = 0. Additionally, Zn is a commutative ring with identity

1Z = 1. Indeed, m(a, b) = ab = ba = m(b, a) and m(1, a) = a = m(a, 1) for all

a, b ∈ Z.
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